Effect of Equal Energy Impact on CFRP in Arctic Conditions

Author(s):  
Arnob Banik ◽  
Kwek-Tze Tan
Author(s):  
Andrey Kirichek ◽  
Dmitriy Solovyev

The article is devoted to the analysis of known structures of impact devices used in industry in order to obtain recommendations for their adaptation or when creating new structures for wave strain hardening by surface plastic deformation. The analysis was carried out on the used drive and on the main parameters of impact devices: impact energy, impact frequency, relative metal consumption and efficiency. The options are the best combinations of parameters for electric, pneumatic and hydraulic drives. Recommendations are given on the use of such devices, with appropriate adaptation, as pulse generators for wave strain hardening.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1036
Author(s):  
Eduardo Colin García ◽  
Alejandro Cruz Ramírez ◽  
Guillermo Reyes Castellanos ◽  
José Federico Chávez Alcalá ◽  
Jaime Téllez Ramírez ◽  
...  

Ductile iron camshafts low alloyed with 0.2 and 0.3 wt % vanadium were produced by one of the largest manufacturers of the ductile iron camshafts in México “ARBOMEX S.A de C.V” by a phenolic urethane no-bake sand mold casting method. During functioning, camshafts are subject to bending and torsional stresses, and the lobe surfaces are highly loaded. Thus, high toughness and wear resistance are essential for this component. In this work, two austempering ductile iron heat treatments were evaluated to increase the mechanical properties of tensile strength, hardness, and toughness of the ductile iron camshaft low alloyed with vanadium. The austempering process was held at 265 and 305 °C and austempering times of 30, 60, 90, and 120 min. The volume fraction of high-carbon austenite was determined for the heat treatment conditions by XRD measurements. The ausferritic matrix was determined in 90 min for both austempering temperatures, having a good agreement with the microstructural and hardness evolution as the austempering time increased. The mechanical properties of tensile strength, hardness, and toughness were evaluated from samples obtained from the camshaft and the standard Keel block. The highest mechanical properties were obtained for the austempering heat treatment of 265 °C for 90 min for the ADI containing 0.3 wt % V. The tensile and yield strength were 1200 and 1051 MPa, respectively, while the hardness and the energy impact values were of 47 HRC and 26 J; these values are in the range expected for an ADI grade 3.


1979 ◽  
Vol 16 (5) ◽  
pp. 977-983 ◽  
Author(s):  
Stephen H. Waits

A variety of bedrock weathering features—both modern and remnant—including surface grus, polygonal cracks, siliceous glaze, tors, weathering pits, and tafoni typify upland outcrops on the Cumberland Peninsula. Tor ridges are particularly prevalent and at lower elevations they show significant modification and streamlining by flowing ice. On summit areas at elevations above 750 m, however, remnant corestones are preserved in situ, suggesting selective preservation of upland surfaces. Bedrock structure and composition, topographic position, and intensity of process strongly influence tor development. Weathering pits are common on high level, open summit surfaces where weathering occurs in response to both climate and continued removal of derived debris. Pit enlargement through lateral undercutting has been favoured by accumulation of protective bottom residua, mechanical weathering, and the presence of exfoliation crusts. It is postulated that salt crystallization plays a role in outcrop microweathering under present upland arctic conditions.


Sign in / Sign up

Export Citation Format

Share Document