The Stability of Textural Analysis Parameters in Relation to the Method of Marking Regions of Interest

2021 ◽  
pp. 65-74
Author(s):  
Artur Leśniak ◽  
Adam Piórkowski ◽  
Paweł Kamiński ◽  
Małgorzata Król ◽  
Rafał Obuchowicz ◽  
...  
1971 ◽  
Vol 93 (1) ◽  
pp. 340-342
Author(s):  
Barry Wolf

In tension-tension, as well as in compression-tension, fatigue testing it has been observed that there exist combinations of loading and specimen characteristics for which the specimen becomes unstable. The theory explaining this behavior is well known and stability curves which predict the stability or instability of the specimen have been tabulated. Unfortunately these tabulations do not extend into the regions of interest for actual fatigue tests. The present work outlines the theory and offers a simple criterion for the design of stable fatigue tests which results from the extension of these stability curves.


2014 ◽  
Vol 532 ◽  
pp. 126-129
Author(s):  
Zhi Gang Zhang ◽  
Hong Yu Bian ◽  
Hui Xu ◽  
Zi Qi Song

One of the most effective instruments for target detection in turbid waters is imaging sonar. However, the aspect angle of imaging sonar is usually small and that is a sacrifice for high detection precision. To make imaging sonar practical in large scale target detection with wide aspect angle, investigating image matching methods for continuous sonar frames is of great importance. A novel image matching method using local features of SIFT is described in this paper, which mainly focuses on the problem of weak echo signals and the following sonar images mismatch. The correspondence between objects and cast shadow regions is employed to extract regions of interest. Besides, status parameters of underwater vehicle are used to approximate the image transformation. Image segmentation methods are involved to decrease the size of the feature extracting regions and reduce the impact of non-target seabed areas, which improves the stability of this sonar image matching method significantly.


2014 ◽  
Vol 50 (3) ◽  
pp. 583-590 ◽  
Author(s):  
Marilene Estanqueiro ◽  
Jaime Conceição ◽  
Maria Helena Amaral ◽  
José Manuel Sousa Lobo

The present study was planned to improve the stability of dithranol using solid dispersions (SD). Two different SD at a 1:9 ratio of dithranol/excipient were prepared: one of them using glyceryl behenate as excipient and the other using a mixture of argan oil with stearic acid (1:8 ratio) as excipient. Pure dithranol and SD of dithranol were incorporated in an oil-in-water cream and in a hydrophobic ointment in a drug/dermatological base ratio of 1:10. The physical and mechanical properties of semisolid formulations incorporating the pure drug and the developed SD were evaluated through rheological and textural analysis. To evaluate the stability, L*a*b* color space parameters of SD and semisolid formulations, and pH of hydrophilic formulations were determined at defined times, during one month. Each sample was stored at different conditions namely, light exposure (room temperature), high temperature exposition (37 °C) (protected from light) and protected from light (room temperature). Despite higher values of firmness and adhesiveness, hydrophobic ointment exhibited the best rheological features compared to the oil-in-water cream, namely a shear-thinning behavior and high thixotropy. These formulations have also presented more stability, with minor changes in L*a*b* color space parameters. The results of this study indicate that is possible to conclude that the developed SD contributed to the increased stability of dithranol.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Fan Huang ◽  
Behdad Dashtbozorg ◽  
Jiong Zhang ◽  
Erik Bekkers ◽  
Samaneh Abbasi-Sureshjani ◽  
...  

The retinal fractal dimension (FD) is a measure of vasculature branching pattern complexity. FD has been considered as a potential biomarker for the detection of several diseases like diabetes and hypertension. However, conflicting findings were found in the reported literature regarding the association between this biomarker and diseases. In this paper, we examine the stability of the FD measurement with respect to (1) different vessel annotations obtained from human observers, (2) automatic segmentation methods, (3) various regions of interest, (4) accuracy of vessel segmentation methods, and (5) different imaging modalities. Our results demonstrate that the relative errors for the measurement of FD are significant and FD varies considerably according to the image quality, modality, and the technique used for measuring it. Automated and semiautomated methods for the measurement of FD are not stable enough, which makes FD a deceptive biomarker in quantitative clinical applications.


2013 ◽  
Vol 846-847 ◽  
pp. 1162-1165
Author(s):  
Xiang Gao ◽  
Chong Zhang ◽  
Chun Gang Zhang ◽  
Xi Juan Guo

Pose estimation of 3d object is a hot research in the field of computer vision. This paper presents a novel pose estimation method based on colored markers. To overcome the effect of the luminance and other colors, this method uses the HSV color space and isolates the colors operating only on chromaticity plane where value (V) has no actual effect for identifying the colored regions of interest. The template is then applied on the remaining colors in order to find the center of the region. The pixels which have the same color but are not in the marker area are excluded, since they are considered noisy. The template guarantees the stability and efficiency of the extraction of the feature points. Compared with the CDT algorithm, the proposed method can extract reliable center points, and has higher accuracy in pose estimation for planar rigid objects. At last, experimental results demonstrate the efficiency of the method.


2021 ◽  
Author(s):  
Yuto Kurihara ◽  
Toru Takahashi ◽  
Rieko Osu

AbstractInter-brain synchronization is enhanced when individuals perform rhythmic interpersonal coordination tasks, such as playing instruments in music ensembles. Experimentally, synchronization has been shown to correlate with the performance of joint tapping tasks. However, it is unclear whether inter-brain synchronization is related to the stability of interpersonal coordination represented as the standard deviation of relative phase (SDRP). In this study, we simultaneously recorded electroencephalograms of two paired individuals during anti-phase tapping in three speed conditions: slow (reference inter-tap interval [ITI]: 0.5 s), fast (reference ITI: 0.25 s), and free (preferred ITI). We calculated the inter-brain synchronization within six regions of interest: frontal, central, left/right temporal, parietal, and occipital regions. We found that synchronization of the central-temporal regions was positively correlated with SDRP in the theta and alpha bands, while synchronization of the frontal-frontal and frontal-central was positively correlated with SDRP in the beta band. These results demonstrate that inter-brain synchronization occurs only when task requirements are high, and that it increases with the instability of the coordination. This may be explained by the stronger mutual prediction required in unstable coordination than that in stable coordination, which increases inter-brain synchronization.


1982 ◽  
Vol 99 ◽  
pp. 605-613
Author(s):  
P. S. Conti

Conti: One of the main conclusions of the Wolf-Rayet symposium in Buenos Aires was that Wolf-Rayet stars are evolutionary products of massive objects. Some questions:–Do hot helium-rich stars, that are not Wolf-Rayet stars, exist?–What about the stability of helium rich stars of large mass? We know a helium rich star of ∼40 MO. Has the stability something to do with the wind?–Ring nebulae and bubbles : this seems to be a much more common phenomenon than we thought of some years age.–What is the origin of the subtypes? This is important to find a possible matching of scenarios to subtypes.


1999 ◽  
Vol 173 ◽  
pp. 309-314 ◽  
Author(s):  
T. Fukushima

AbstractBy using the stability condition and general formulas developed by Fukushima (1998 = Paper I) we discovered that, just as in the case of the explicit symmetric multistep methods (Quinlan and Tremaine, 1990), when integrating orbital motions of celestial bodies, the implicit symmetric multistep methods used in the predictor-corrector manner lead to integration errors in position which grow linearly with the integration time if the stepsizes adopted are sufficiently small and if the number of corrections is sufficiently large, say two or three. We confirmed also that the symmetric methods (explicit or implicit) would produce the stepsize-dependent instabilities/resonances, which was discovered by A. Toomre in 1991 and confirmed by G.D. Quinlan for some high order explicit methods. Although the implicit methods require twice or more computational time for the same stepsize than the explicit symmetric ones do, they seem to be preferable since they reduce these undesirable features significantly.


1997 ◽  
Vol 161 ◽  
pp. 197-201 ◽  
Author(s):  
Duncan Steel

AbstractWhilst lithopanspermia depends upon massive impacts occurring at a speed above some limit, the intact delivery of organic chemicals or other volatiles to a planet requires the impact speed to be below some other limit such that a significant fraction of that material escapes destruction. Thus the two opposite ends of the impact speed distributions are the regions of interest in the bioastronomical context, whereas much modelling work on impacts delivers, or makes use of, only the mean speed. Here the probability distributions of impact speeds upon Mars are calculated for (i) the orbital distribution of known asteroids; and (ii) the expected distribution of near-parabolic cometary orbits. It is found that cometary impacts are far more likely to eject rocks from Mars (over 99 percent of the cometary impacts are at speeds above 20 km/sec, but at most 5 percent of the asteroidal impacts); paradoxically, the objects impacting at speeds low enough to make organic/volatile survival possible (the asteroids) are those which are depleted in such species.


Author(s):  
Godfrey C. Hoskins ◽  
V. Williams ◽  
V. Allison

The method demonstrated is an adaptation of a proven procedure for accurately determining the magnification of light photomicrographs. Because of the stability of modern electrical lenses, the method is shown to be directly applicable for providing precise reproducibility of magnification in various models of electron microscopes.A readily recognizable area of a carbon replica of a crossed-line diffraction grating is used as a standard. The same area of the standard was photographed in Phillips EM 200, Hitachi HU-11B2, and RCA EMU 3F electron microscopes at taps representative of the range of magnification of each. Negatives from one microscope were selected as guides and printed at convenient magnifications; then negatives from each of the other microscopes were projected to register with these prints. By deferring measurement to the print rather than comparing negatives, correspondence of magnification of the specimen in the three microscopes could be brought to within 2%.


Sign in / Sign up

Export Citation Format

Share Document