Reduce Phase-Lead Effect in an Active Velocity Feedback by Frequency Range Selector

Author(s):  
La Duc Viet ◽  
Nguyen Van Hai ◽  
Nguyen Tuan Ngoc
Author(s):  
Sahib Singh Chawla

The laminar boundary layer on a magnetized plate, when the magnetic field oscillates in magnitude about a constant non-zero mean, is analysed. For low-frequency fluctuations the solution is obtained by a series expansion in terms of a frequency parameter, while for high frequencies the flow pattern is of the ‘skin-wave’ type unaffected by the mean flow. In the low-frequency range, the phase lead and the amplitude of the skin-friction oscillations increase at first and then decrease to their respective ‘skin-wave’ values. On the other hand the phase angle of the surface current decreases from 90° to 45° and its amplitude increases with frequency.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Viet Duc La

Abstract In an active vibration isolation system using velocity feedback, the phase–lead due to high-pass filter and the phase–lag due to time delay limit the controller gain. This paper extends and applies a simple frequency range selector to increase the critical control gain. The selector uses the isolated mass's acceleration, velocity, and displacement and is tuned by two knobs. Our proposed approach has simple static switching law, suppresses both low and high frequency control, and does not add additional phase–lead or phase–lag. A simple expression of the effective gain is presented to give insight into the influence of two tuning knobs. Numerical simulations and a simple experiment are performed to illustrate the controller's effectiveness under harmonic and random disturbances.


1986 ◽  
Vol 55 (5) ◽  
pp. 915-930 ◽  
Author(s):  
S. J. Judge ◽  
B. G. Cumming

We recorded from neurons dorsal and dorsolateral to the third nerve nucleus of the monkey whose discharge rates modulated when the monkey tracked targets moving in depth but not when it tracked targets moving from side to side. The neurons' activity modulated equally well whether the target moved directly toward one eye or the other. For most neurons the amplitude of modulation was similar whether the monkey tracked monocularly (blur cue alone), binocularly with accommodation open-loop (disparity cue alone), or in normal binocular viewing. By comparing the modulation in normal binocular viewing with that when the blur and disparity cues were in conflict we were able to show that 19 neurons discharged in relation to the vergence response alone and not to accommodation. Eight neurons discharged exclusively in relation to accommodation. While the monkeys tracked targets moving in depth so that target vergence varied with a sinusoidal time course (frequency 0.1 or 0.2 Hz) the discharge modulations of identified vergence cells generally showed much more phase lead than expected of motoneurons. We examined the activity of a subset of these vergence cells in response to a range of stimulus frequencies to compare the dynamics of these neurons with motoneurons. The phase leads were larger than those expected of motoneurons over the entire frequency range tested. We speculate that vergence neurons may selectively activate (directly or indirectly) motoneurons with longer time constants than the mean.


Author(s):  
Joachim Frank

Cryo-electron microscopy combined with single-particle reconstruction techniques has allowed us to form a three-dimensional image of the Escherichia coli ribosome.In the interior, we observe strong density variations which may be attributed to the difference in scattering density between ribosomal RNA (rRNA) and protein. This identification can only be tentative, and lacks quantitation at this stage, because of the nature of image formation by bright field phase contrast. Apart from limiting the resolution, the contrast transfer function acts as a high-pass filter which produces edge enhancement effects that can explain at least part of the observed variations. As a step toward a more quantitative analysis, it is necessary to correct the transfer function in the low-spatial-frequency range. Unfortunately, it is in that range where Fourier components unrelated to elastic bright-field imaging are found, and a Wiener-filter type restoration would lead to incorrect results. Depending upon the thickness of the ice layer, a varying contribution to the Fourier components in the low-spatial-frequency range originates from an “inelastic dark field” image. The only prospect to obtain quantitatively interpretable images (i.e., which would allow discrimination between rRNA and protein by application of a density threshold set to the average RNA scattering density may therefore lie in the use of energy-filtering microscopes.


1971 ◽  
Vol 36 (4) ◽  
pp. 527-537 ◽  
Author(s):  
Norman P. Erber

Two types of special hearing aid have been developed recently to improve the reception of speech by profoundly deaf children. In a different way, each special system provides greater low-frequency acoustic stimulation to deaf ears than does a conventional hearing aid. One of the devices extends the low-frequency limit of amplification; the other shifts high-frequency energy to a lower frequency range. In general, previous evaluations of these special hearing aids have obtained inconsistent or inconclusive results. This paper reviews most of the published research on the use of special hearing aids by deaf children, summarizes several unpublished studies, and suggests a set of guidelines for future evaluations of special and conventional amplification systems.


2020 ◽  
pp. 67-72
Author(s):  
A. V. Konkov ◽  
D. V. Golovin

The influence of environmental conditions on a sound pressure reproduced by the primary method in the measuring chambers of the Pistonphone in the frequency range from 1 mHz to 250 Hz is estimated. Numerical estimations of influence of environmental conditions on sound pressure in pistonphone measuring chambers are given and special requirements to system of maintenance of required external conditions are specified.


2020 ◽  
pp. 53-58
Author(s):  
A. V. Koudelny ◽  
I. M. Malay ◽  
V. A. Perepelkin ◽  
I. P. Chirkov

The possibility of using bolometric converters of microwave power from the State primary standard of the unit of power of electromagnetic waves in waveguide and coaxial paths GET 167-2017, which has a frequency range from 37,5 to 78,33 GHz, in an extended frequency range up to 220 GHz, is shown. Studies of semiconductor bolometric converters of microwave power in an extended frequency range have confirmed good agreement and smooth frequency characteristics of the effective efficiency factor of the converters. Based on the research results, the State working standard of the unit of power of electromagnetic waves of 0,1–10 mW in the frequency range from 37,5 to 220 GHz 3.1.ZZT.0288.2018 was approved. The technical characteristics of the working standard of the unit of power of electromagnetic oscillations in an extended frequency range from 37,5 to 220 GHz are given.


Sign in / Sign up

Export Citation Format

Share Document