Research and Test of the Self-designed and Manufactured Rotary Friction Welding Machine with CT3 Steel Samples

Author(s):  
Tran Vinh Hung ◽  
Ta Van Ranh ◽  
Tran Thi Van Nga ◽  
Le Hong Ky
Author(s):  
Yohanes Yohanes ◽  
◽  
Novri Andri ◽  

This study aims to determine the performance of the dynamometer design as a measure of mechanical power on a rotary friction welding machine. The design of the dynamometer includes the design, manufacture, calibration, and testing of the dynamometer. The design and manufacture of strain dynamometers is adjusted to the motor of the rotary friction welding machine at the University of Riau's Mechanical Engineering Production Technology Laboratory. The design of the strain dynamometer has a dimension of 175 mm × 3 mm × 50 mm and serves to determine the motor torque value with the help of a 120 ohm strain gauge sensor. The device designed is equipped with an electrical microcontroller device and an optocoupler sensor to measure the angular speed of the motor. Next, the dynamometer performance testing is performed on the rotary friction welding machine. The results of testing in the rotary welding process, the greater the pneumatic pressure exerted during welding, the greater the measured power. The largest measured power value is 2452.92 Watt in the forging process, and the smallest measured power value is 2050.24 Watt in the first time of the initial motor rotation. After doing the research, it can be concluded that the tools designed and built can work and have a fairly good performance.


Author(s):  
Yohanes Yohanes ◽  
◽  
Muhammad Rahdiyat Alqolbi ◽  

Friction welding is a type of solid state welding where the welding process is carried out in the solid phase. In the welding process there are several components that work, namely the electric motor as the main mover. This study aims to developmant a dynamometer to measure the mechanical power of a rotary friction welding machine. Dynamometer development includes the design, manufacture, calibration and testing of dynamometers. Dynamometer design that will be placed on the holder that serves as a stretch bar. Dimension of the strain dynamometer is 35 mm × 4 mm × 70 mm and serves to determine the motor torque value with the help of a 120 Ohm strain gauge sensor and to measure power it needs an additional speed sensor or optocoupler sensor to measure the motor angular speed. In need of making a microcontroller or an electrical device. Finally, the dynamometer testing process on a rotary friction welding machine. When the welding process takes place, the greater the pneumatic pressure exerted during welding, the more measurable the power is. The largest power value measured in the forging phase is 2408.50 Watts and the smallest power measured by the dynamometer is 2050.24 Watts at the initial rotation.


2021 ◽  
Vol 410 ◽  
pp. 299-305
Author(s):  
Artem S. Atamashkin ◽  
Elena Y. Priymak ◽  
Elena A. Kuzmina

In this work, pipe billets with a diameter of 73 mm and a wall thickness of 9 mm from steels 32G2 and 40KhN are friction welded with an aim to optimize the process parameters. The friction pressure, the forging pressure and the length of the fusion varied. After the implementation of various welding modes, tensile tests and metallographic studies were carried out. The optimal welding parameters have been established, which make it possible to obtain tensile strength at the level of the 32G2 base metal. The study results of the microstructure and SEM fractographs after the optimal welding mode are presented.


2022 ◽  
Vol 167 ◽  
pp. 107396
Author(s):  
Wei Yin ◽  
Hongyu Lu ◽  
Yelong Zheng ◽  
Yu Tian

2021 ◽  
Vol 100 (09) ◽  
pp. 302-308
Author(s):  
BRANDON SCOTT TAYSOM ◽  
◽  
CARL D. SORENSEN ◽  
TRACY W. NELSON

Advanced manufacturing processes improve the cost and quality of goods. Rotary friction welding is a fast, energy-efficient, and reliable joining process for metals, but new applications are hindered by large development costs for each new alloy. Each alloy set has different welding characteristics; therefore, lessons learned from a single alloy are not always broadly applicable. To establish knowledge that is applicable across multiple alloys, a family of different superalloys were welded to discover process trends that were applicable beyond a single alloy set. In this study, weld symmetry did not correlate to weld strength across alloy systems. Some alloys’ strongest welds occurred at maximum symmetry, whereas high asymmetry was associated with different alloys’ maximum strength. High feed rates, high welding forces, low energy, and low temperatures all resulted in high-strength welds across all alloy and geometry combinations. Tensile strengths greater than 95% of base-metal strength were recorded for most alloy systems.


Author(s):  
Luis A. Reyes ◽  
Carlos Garza ◽  
Miguel Delgado ◽  
Lizangela Guerra-Fuentes ◽  
Luis López ◽  
...  

Author(s):  
Mohammad Afzali ◽  
Vahid Asghari

Abstract the purpose of this project was to introduce a way to improve the mechanical properties of welded dissimilar material, which gives benefits such as affordable, high speed, and suitable bond property. In this experimental project, the friction welding method has been applied, including combining parameters, such as numerical control (NC) machine including two different speeds, and three different cross-sections; including flat, cone, and step surfaces. When the welding process was done, samples were implemented and prepared via bending test of materials. the results have shown that, besides increasing the machining velocity, the surface friction increased, and so did the temperature. By considering the stated experimental facts, the melting temperature of composite materials has increased. This provides the possibility of having a better blend of nanomaterial compared to the base melted plastics. Thus, the result showed that, besides increasing the weight percentage (wt %) of Nanomaterials contents and machining velocity, the mechanical properties have increased on the welded area for all three types of samples. This enhancement is due to the better melting process on the welded area with attendance of various Nanoparticles contents. Also, the results showed that the shape of the welding area could play a significant role, and the results also change drastically where the shape changes. Optimum shape in the welding process has been dedicated to the step surface. The temperature causes the melting process, which is a significant factor in the friction welding process.


Sign in / Sign up

Export Citation Format

Share Document