Mechanical Properties and Fracture Energy of Concrete Beams Reinforced with Basalt Fibres

Author(s):  
Ana Caroline Da Costa Santos ◽  
Paul Archbold

Fibre-reinforced concrete (FRC) is widely employed in the construction industry, with assorted fibre types being used for different applications. Typically, steel fibres give additional tensile strength to the mixture, while flexible fibres may be used in large sections, such as floor slabs, to control crack width and to improve the handling ability of precast sections. For many reasons, including durability concerns, environmental impact, thermal performance, etc, alternatives to the currently available fibres are being sought. This study examines the potential of using basalt fibres, a mineral and natural material, as reinforcement of concrete sections in comparison to steel fibres and plain concrete mix. Mixes were tested containing 0.5% and 1.0% of basalt fibres measuring 25mm length, 0.5% of the same material with 48mm length and steel fibres measuring 50mm by 0.05%, 0.1%, 0.15% and 0.2% of the concrete volume. For the mechanical performance analysis, the 3-point bending test was led and the fracture energy, Young’s modulus and tensile strength in different moments of the tests were calculated. When compared to the control mixtures and the steel-fibre-reinforced concrete, the mixes containing basalt had a reduction in their elastic modulus, representing a decrease in the concrete brittleness. At the same time, the fracture energy of the mixtures was significantly increased with the basalt fibres in both lengths. Finally, the flexural strength was also higher for the natural fibre reinforced concrete than for the plain concrete and comparable to the results obtained with the addition of steel fibres by 0.15%.

The demerits of plain concrete are its lesser tensile strength, not significant ductility and poor resistance to cracking. Due to propagation of internal micro cracks in plain concrete causes decrease in tensile strength, hence leads concrete to brittle fracture. Addition of fibres behaves like crack arrester and enhances the dynamic properties of concrete. In India natural fibres such as bamboo, coir, jute, sisal, pineapple, banana, ramie etc are high available. Jute is a useful natural fibre for concrete reinforcement due to its easy availability and low cost. In this research, the experiments related to Jute fibre reinforced concrete (JFRC) are done by taking different fibre percentage and the compressive strength and modulus of rapture value observed. This JFRC can replace plain concrete and wood in many cases for example in door and window panels, inclined roof slabs, partition walls etc


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3795
Author(s):  
Fernando Suárez ◽  
Jaime C. Gálvez ◽  
Marcos G. Alberti ◽  
Alejandro Enfedaque

The size effect on plain concrete specimens is well known and can be correctly captured when performing numerical simulations by using a well characterised softening function. Nevertheless, in the case of polyolefin-fibre-reinforced concrete (PFRC), this is not directly applicable, since using only diagram cannot capture the material behaviour on elements with different sizes due to dependence of the orientation factor of the fibres with the size of the specimen. In previous works, the use of a trilinear softening diagram proved to be very convenient for reproducing fracture of polyolefin-fibre-reinforced concrete elements, but only if it is previously adapted for each specimen size. In this work, a predictive methodology is used to reproduce fracture of polyolefin-fibre-reinforced concrete specimens of different sizes under three-point bending. Fracture is reproduced by means of a well-known embedded cohesive model, with a trilinear softening function that is defined specifically for each specimen size. The fundamental points of these softening functions are defined a priori by using empirical expressions proposed in past works, based on an extensive experimental background. Therefore, the numerical results are obtained in a predictive manner and then compared with a previous experimental campaign in which PFRC notched specimens of different sizes were tested with a three-point bending test setup, showing that this approach properly captures the size effect, although some values of the fundamental points in the trilinear diagram could be defined more accurately.


2021 ◽  
Vol 15 (1) ◽  
pp. 81-92
Author(s):  
Constantinos B. Demakos ◽  
Constantinos C. Repapis ◽  
Dimitros P. Drivas

Aims: The aim of this paper is to investigate the influence of the volume fraction of fibres, the depth of the beam and the shear span-to-depth ratio on the shear strength of steel fibre reinforced concrete beams. Background: Concrete is a material widely used in structures, as it has high compressive strength and stiffness with low cost manufacturing. However, it presents low tensile strength and ductility. Therefore, through years various materials have been embedded inside it to improve its properties, one of which is steel fibres. Steel fibre reinforced concrete presents improved flexural, tensile, shear and torsional strength and post-cracking ductility. Objective: A better understanding of the shear performance of SFRC could lead to improved behaviour and higher safety of structures subject to high shear forces. Therefore, the influence of steel fibres on shear strength of reinforced concrete beams without transverse reinforcement is experimentally investigated. Methods: Eighteen concrete beams were constructed for this purpose and tested under monotonic four-point bending, six of which were made of plain concrete and twelve of SFRC. Two different aspect ratios of beams, steel fibres volume fractions and shear span-to-depth ratios were selected. Results: During the experimental tests, the ultimate loading, deformation at the mid-span, propagation of cracks and failure mode were detected. From the tests, it was shown that SFRC beams with high volume fractions of fibres exhibited an increased shear capacity. Conclusion: The addition of steel fibres resulted in a slight increase of the compressive strength and a significant increase in the tensile strength of concrete and shear resistance capacity of the beam. Moreover, these beams exhibit a more ductile behaviour. Empirical relations predicting the shear strength capacity of fibre reinforced concrete beams were revised and applied successfully to verify the experimental results obtained in this study.


2018 ◽  
Vol 163 ◽  
pp. 02003 ◽  
Author(s):  
Julita Krassowska ◽  
Marta Kosior-Kazberuk

Experimental tests were carried out to assess the failure model of steel fiber reinforced concrete beams. Experimental research was focused on observing changes in the behavior of the tested elements depending on the amount of shear reinforcement and the fiber. Model two-span beams with a cross-section of 80x180 mm and a length of 2000 mm were tested. The beams had varied stirrup spacing. The following amounts of steel fibres in concrete were used: 78.5 kg/m3 (1.0%) i 118 kg/m3 (1.5%). Concrete beams without fibres were examined at the same time. The beams were loaded in a five-point bending test until they were destroyed. Shear or bending capacity of the element was observed. Fibre reinforced concrete beams were not destroyed rapidly, but they kept their shape consistent under load. Larger number of diagonal cracks with a smaller width were observed in fibre reinforced concrete beams. Failure of concrete beams without fibres was rapid, with a characteristic brittle cracking. Steel fibres revealed the ability to transfer significant shear stress after cracking in comparison to plain concrete.


2021 ◽  
Author(s):  
Hesham Othman

The next generation of concrete, Ultra-High Performance Fibre Reinforced Concrete (UHP-FRC), exhibits exceptional mechanical characteristics. UHP-FRC has a compressive strength exceeding 150 MPa, tensile strength in the range of 8-12 MPa, and fracture energy of several orders of magnitudes of traditional concrete. The focus of this research is to investigate and analyze the advantage of using UHP - FRC in impact resistance structures. To achieve these goals, two experimental testing programs and major numerical investigations have been conducted. The material experimental investigation has been conducted to determine the effects of strain rate on UHP - FRC. Two parameters are investigated, namely: compressive strength (80, 110, 130, and 150 MPa); and steel fibre content (0, 1, 2, and 3%). Experimental results showed that the rate sensitivity decreases with the increase in the compressive strength ; and the dynamic enhancement of tensile strength is inversely proportional to the fibre content. The structural impact testing program focuses on the dynamic response of full - scale reinforced concrete plates as well as generating precise impact measurements. Twelve reinforced plates with identical dimensions are tested under high-mass low-velocity multi-impacts. The investigated parameters include: concrete type (NSC, HSC, and UHP - FRC), fibre volume content, and steel reinforcement ratio. The results showed that the use of UHP -FRC instead of NSC or HSC is able to change the failure mode from punching to pure flexural; and UHP -FRC containing 3% fibre has superior dynamic properties. For plates with identical steel reinforcement, the total impact energy of UHP-FRC plate containing 3% fibres is double the capacity of UHP - FRC plate containing 2% fibres , and 18 times the capacity of NSC plate. A three-dimensional finite element analysis has been performed using ABAQUS/Explicit to model multi-impacts on RC plates and the applicability is verified using existing experimental data. Concrete damage plasticity (CDP) model is adapted to define UHP - FRC. The CDP constitutive model parameters for the new material are calibrated through a series of parametric studies. Computed responses are sensitive to CDP parameters related to the tension, fracture energy, and expansion properties. The analytical results showed that the existing CDP model can predict the response and crack pattern of UHP - FRC reasonably well.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4112
Author(s):  
Rajab Abousnina ◽  
Sachindra Premasiri ◽  
Vilive Anise ◽  
Weena Lokuge ◽  
Vanissorn Vimonsatit ◽  
...  

Adding fibers to concrete helps enhance its tensile strength and ductility. Synthetic fibres are preferable to steel ones which suffer from corrosion that reduces their functionality with time. More consideration is given to synthetic fibres as they can be sourced from waste plastics and their incorporation in concrete is considered a new recycling pathway. Thus, this work investigates the potential engineering benefits of a pioneering application using extruded macro polyfibres in concrete. Two different fiber dosages, 4 kg/m3 and 6 kg/m3, were used to investigate their influence based on several physical, mechanical and microstructural tests, including workability, compressive strength, modulus of elasticity, splitting-tensile strength, flexural test, CMOD, pull-out test and porosity. The test results revealed a slight decrease in the workability of the fibre-reinforced concrete, while all the mechanical and microstructural properties were enhanced significantly. It was observed that the compressive, splitting tensile and bonding strength of the concrete with 6 kg/m3 fibre dosage increased by 19.4%, 41.9% and 17.8% compared to the plain concrete specimens, respectively. Although there was no impact of the fibres on the modulus of rupture, they significantly increased the toughness, resulting in a progressive type of failure instead of the sudden and brittle type. Moreover, the macroporosity was reduced by the fibre addition, thus increasing the concrete compressive strength. Finally, simplified empirical formulas were developed to predict the mechanical properties of the concrete with fibre addition. The outcome of this study will help to increase the implementation of the recycled plastic waste in concrete mix design and promote a circular economy in the waste industry.


2014 ◽  
Vol 626 ◽  
pp. 311-316 ◽  
Author(s):  
Yi Fei Hao ◽  
Hong Hao ◽  
Gang Chen

Concrete is a brittle material, especially under tension. Intensive researches have been reported to add various types of fibres into concrete mix to increase its ductility. Recently, the authors proposed a new type of steel fibre with spiral shape to reinforce concrete material. Laboratory tests on concrete cylinder specimens demonstrated that compared to other fibre types such as the hooked-end, deformed and corrugated fibres the new fibres have larger displacement capacity and provide better bonding with the concrete. This study performs drop-weight impact tests to investigate the behaviour of concrete beams reinforced by different types of steel fibres. The quasi-static compressive and split tensile tests were also conducted to obtain the static properties of plain concrete and steel fibre reinforced concrete (FRC) materials. The quasi-static tests were carried out using hydraulic testing machine and the impact tests were conducted using an instrumented drop-weight testing system. Plain concrete and concrete reinforced by the commonly used hooked-end steel fibres and the proposed spiral-shaped steel fibres were tested in this study. The volume dosage of 1% fibre was used to prepare all FRC specimens. Repeated drop-weight impacts were applied to the beam specimens until total collapse. A 15.2 kg hard steel was used as the drop-weight impactor. A drop height of 0.5 m was considered in performing the impact tests. The force-displacement relations and the energy absorption capabilities of plain concrete and FRC beams were obtained, compared and discussed. The advantage and effectiveness of the newly proposed spiral-shaped steel fibres in increasing the performance of FRC beam elements under impact loads were examined.


Author(s):  
Fangyuan Li ◽  
Yunxuan Cui ◽  
Chengyuan Cao ◽  
Peifeng Wu

Directionally distributed steel fibre-reinforced concrete has been proposed as a novel concrete because of its high tensile strength and crack resistance in specific directions. Based on the existing studies of the effect of the fibre direction on the mechanical properties of fibre-reinforced concrete, the authors in this paper performed further studies of the mechanical properties of directionally distributed steel fibre-reinforced concrete by conducting split tensile and bending tests. The split tensile strength of the directionally distributed fibre-reinforced concrete clearly exhibited anisotropy. The split tensile strength perpendicular to the fibre direction was much higher than that parallel to the fibre direction. The split tensile strength perpendicular to the fibre direction was almost twice the tensile strength of plain concrete. The flexural performance of directionally distributed fibre-reinforced concrete in the fibre direction significantly improved compared to that of randomly distributed fibre-reinforced concrete. Specifically, the flexural strength increased by as much as 97%. Gravity resulted in a deviation in the tensile properties of concrete prepared by manually and directionally placing fibres in a layered casting process. The test results can be utilised in subsequent concrete designs. The conclusions reached in this paper provide comprehensive mechanical design parameters for the application of directionally distributed fibre-reinforced concrete.


This study presents the experimental investigation carried out to study the mechanical properties of concrete with and without the addition of fibres to it.d Concrete is the most consumed material in the world which has the property of strong in compression and weak in tension. Also plain concrete possess very limited ductility and little resistance to cracking. Hence fibres are introduced in the concrete to improve the tensile strength & brittleness of the concrete. These fibres which are closely spaced and dispersed uniformly in the concrete arrest the micro and macro cracks and improve the tensile strength of concrete. Concrete admixed with such fibres are known as Fibre Reinforced Concrete. The combination of two (or) more fibres called as Hybridization is carried out in this work. M25 grade concrete is designed as per IS 10262:2009 with the volume fraction of 0-1.5%. The workability of the concrete is affected due to the addition of fibres and hence super plasticizers are added to the concrete. The fibres considered for the study are (i) Crimped Steel Fibre (0-1.5%) and (ii) Shortcut Glass Fibre (0.1-0.2%). The behaviour of the hybrid fibre reinforced concrete is investigated by conducting compressive strength test on cube specimen of size 150mmx150mmx150mm and split tensile strength test on cylinder specimen of size 150mm diameter and 300mm height. From the experimental results, the optimum fibre combinations for maximum compressive strength and spilt tensile strength of concrete are identified.


Sign in / Sign up

Export Citation Format

Share Document