The involvement of glial cell-derived reactive oxygen and nitrogen species in Alzheimer’s disease

Author(s):  
Douglas G. Walker ◽  
Lih-Fen Lue ◽  
Andis Klegeris ◽  
Patrick L. McGeer
Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1983
Author(s):  
Erika Kropf ◽  
Margaret Fahnestock

Nerve growth factor (NGF) and its precursor form, proNGF, are critical for neuronal survival and cognitive function. In the brain, proNGF is the only detectable form of NGF. Dysregulation of proNGF in the brain is implicated in age-related memory loss and Alzheimer’s disease (AD). AD is characterized by early and progressive degeneration of the basal forebrain, an area critical for learning, memory, and attention. Learning and memory deficits in AD are associated with loss of proNGF survival signalling and impaired retrograde transport of proNGF to the basal forebrain. ProNGF transport and signalling may be impaired by the increased reactive oxygen and nitrogen species (ROS/RNS) observed in the aged and AD brain. The current literature suggests that ROS/RNS nitrate proNGF and reduce the expression of the proNGF receptor tropomyosin-related kinase A (TrkA), disrupting its downstream survival signalling. ROS/RNS-induced reductions in TrkA expression reduce cell viability, as proNGF loses its neurotrophic function in the absence of TrkA and instead generates apoptotic signalling via the pan-neurotrophin receptor p75NTR. ROS/RNS also interfere with kinesin and dynein motor functions, causing transport deficits. ROS/RNS-induced deficits in microtubule motor function and TrkA expression and signalling may contribute to the vulnerability of the basal forebrain in AD. Antioxidant treatments may be beneficial in restoring proNGF signalling and axonal transport and reducing basal forebrain neurodegeneration and related deficits in cognitive function.


2015 ◽  
Vol 357 ◽  
pp. e511
Author(s):  
R. von Bernhardi ◽  
F. Cornejo ◽  
L. Eugenín-von Bernhardi

Author(s):  
Marta Goschorska ◽  
Izabela Gutowska ◽  
Irena Baranowska-Bosiacka ◽  
Katarzyna Piotrowska ◽  
Emilia Metryka ◽  
...  

It has been reported that donepezil and rivastigmine, the acetylcholinesterase (AchE) inhibitors commonly used in the treatment of Alzheimer’s disease (AD), do not only inhibit AChE but also have antioxidant properties. As oxidative stress is involved in AD pathogenesis, in our study we attempted to examine the influence of donepezil and rivastigmine on the activity of antioxidant enzymes and glutathione concentration in macrophages—an important source of reactive oxygen species and crucial for oxidative stress progression. The macrophages were exposed to sodium fluoride induced oxidative stress. The antioxidant enzymes activity and concentration of glutathione were measured spectrophotometrically. The generation of reactive oxygen species was visualized by confocal microscopy. The results of our study showed that donepezil and rivastigmine had a stimulating effect on catalase activity. However, when exposed to fluoride-induced oxidative stress, the drugs reduced the activity of some antioxidant enzymes (Cat, SOD, GR). These observations suggest that the fluoride-induced oxidative stress may suppress the antioxidant action of AChE inhibitors. Our results may have significance in the clinical practice of treatment of AD and other dementia diseases.


2002 ◽  
Vol 82 (2) ◽  
pp. 305-315 ◽  
Author(s):  
Seigo Tanaka ◽  
Masanori Takehashi ◽  
Naomi Matoh ◽  
Shinya Iida ◽  
Tomoki Suzuki ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1753
Author(s):  
Hao Tang ◽  
Michael Harte

Neuroinflammatory mechanisms with glial cell activation have been implicated in the pathogenic process of Alzheimer’s disease (AD). Activation of the NLRP3 inflammasome is an essential component of the neuroinflammatory response. A role for NLRP3 activation in AD is supported by both in vitro and in vivo preclinical studies with little direct investigation of AD brain tissue. RNA expression of genes of three glial cell markers, HLA-DRA, AIF-1 and GFAP; the components of the NLRP3 inflammasome NLRP3, ASC, and caspase-1; and downstream pre-inflammatory cytokines IL-1 β and IL-18, were investigated in the temporal cortex of AD patients and age- and sex-matched controls. Protein expression of GFAP was also assessed. Increases in both mRNA and protein expression were observed for GFAP in AD. There were no significant changes in other NLRP3 activation markers between groups. Our results indicate the involvement of astrocyte activation in AD, particularly in more severe patients. We found no evidence for the specific involvement of the NLRP3 inflammasome.


2018 ◽  
Vol 7 (10) ◽  
pp. 329 ◽  
Author(s):  
Yu-Te Lin ◽  
Yi-Chung Wu ◽  
Gwo-Ching Sun ◽  
Chiu-Yi Ho ◽  
Tzyy-Yue Wong ◽  
...  

Recent studies have indicated that several anti-hypertensive drugs may delay the development and progression of Alzheimer’s disease (AD). However, the relationships among AD, hypertension, and oxidative stress remain to be elucidated. Here, we aimed to determine whether reactive oxygen species (ROS) reduction by resveratrol in the brain leads to cognitive impairment reduction in rats with angiotensin II (Ang-II)-induced early AD. Male Wistar Kyoto (WKY) rats with Ang-II-induced AD were treated with losartan or resveratrol for two weeks. Our results show decreased blood pressure, increased hippocampal brain-derived neurotrophic factor (BDNF) level, and decreased nucleus tractus solitarius (NTS) ROS production in the Ang-II groups with losartan (10 mg/kg), or resveratrol (10 mg/kg/day) treatment. Furthermore, losartan inhibition of hippocampal TauT231 phosphorylation activated AktS473 phosphorylation, and significantly abolished Ang-II-induced Aβ precursors, active caspase 3, and glycogen synthase kinase 3β (GSK-3β)Y216 expressions. Consistently, resveratrol showed similar effects compared to losartan. Both losartan and resveratrol restored hippocampal-dependent contextual memory by NADPH oxidase 2 (NOX2) deletion and superoxide dismutase 2 (SOD2) elevation. Our results suggest that both losartan and resveratrol exert neuroprotective effects against memory impairment and hippocampal damage by oxidative stress reduction in early stage AD rat model. These novel findings indicate that resveratrol may represent a pharmacological option similar to losartan for patients with hypertension at risk of AD during old age.


Sign in / Sign up

Export Citation Format

Share Document