On Some New Type of Infinite Dimensional Laplacians

Author(s):  
Sergio Scarlatti
2013 ◽  
Vol 2013 ◽  
pp. 1-3
Author(s):  
De-Xing Kong ◽  
Fa Wu

This survey note describes a new type of distributed parameter control systems—the two-point boundary value problems for infinite-dimensional dynamical systems, particularly, for hyperbolic systems of partial differential equations of second order, some of the discoveries that have been done about it and some unresolved questions.


2007 ◽  
Vol 06 (03) ◽  
pp. 385-401 ◽  
Author(s):  
ONOFRIO M. DI VINCENZO ◽  
VINCENZO NARDOZZA

Let F be a field and let E be the Grassmann algebra of an infinite dimensional F-vector space. For any p,q ∈ ℕ, the algebra Mp,q(E) can be turned into a ℤp+q × ℤ2-algebra by combining an elementary ℤp+q-grading with the natural ℤ2-grading on E. The tensor product Mp,q(E) ⊗ Mr,s(E) can be turned into a ℤ(p+q)(r+s) × ℤ2-algebra in a similar way. In this paper, we assume that F has characteristic zero and describe a system of generators for the graded polynomial identities of the algebras Mp,q(E) and Mp,q(E) ⊗ Mr,s(E) with respect to these new gradings. We show that this tensor product is graded PI-equivalent to Mpr+qs,ps+qr(E). This provides a new proof of the well known Kemer's PI-equivalence between these algebras. Then we classify all the graded algebras Mp,q(E) having no non-trivial monomial identities, and finally calculate how many non-isomorphic gradings of this new type are available for Mp,q(E).


Author(s):  
Lucien F. Trueb

A new type of synthetic industrial diamond formed by an explosive shock process has been recently developed by the Du Pont Company. This material consists of a mixture of two basically different forms, as shown in Figure 1: relatively flat and compact aggregates of acicular crystallites, and single crystals in the form of irregular polyhedra with straight edges.Figure 2 is a high magnification micrograph typical for the fibrous aggregates; it shows that they are composed of bundles of crystallites 0.05-0.3 μ long and 0.02 μ. wide. The selected area diffraction diagram (insert in Figure 2) consists of a weak polycrystalline ring pattern and a strong texture pattern with arc reflections. The latter results from crystals having preferred orientation, which shows that in a given particle most fibrils have a similar orientation.


Author(s):  
T. Ichinokawa ◽  
H. Maeda

I. IntroductionThermionic electron gun with the Wehnelt grid is popularly used in the electron microscopy and electron beam micro-fabrication. It is well known that this gun could get the ideal brightness caluculated from the Lengumier and Richardson equations under the optimum condition. However, the design and ajustment to the optimum condition is not so easy. The gun has following properties with respect to the Wehnelt bias; (1) The maximum brightness is got only in the optimum bias. (2) In the larger bias than the optimum, the brightness decreases with increasing the bias voltage on account of the space charge effect. (3) In the smaller bias than the optimum, the brightness decreases with bias voltage on account of spreading of the cross over spot due to the aberrations of the electrostatic immersion lens.In the present experiment, a new type electron gun with the electrostatic and electromagnetic lens is designed, and its properties are examined experimentally.


Author(s):  
R. Sharma ◽  
B.L. Ramakrishna ◽  
N.N. Thadhani ◽  
D. Hianes ◽  
Z. Iqbal

After materials with superconducting temperatures higher than liquid nitrogen have been prepared, more emphasis has been on increasing the current densities (Jc) of high Tc superconductors than finding new materials with higher transition temperatures. Different processing techniques i.e thin films, shock wave processing, neutron radiation etc. have been applied in order to increase Jc. Microstructural studies of compounds thus prepared have shown either a decrease in gram boundaries that act as weak-links or increase in defect structure that act as flux-pinning centers. We have studied shock wave synthesized Tl-Ba-Cu-O and shock wave processed Y-123 superconductors with somewhat different properties compared to those prepared by solid-state reaction. Here we report the defect structures observed in the shock-processed Y-124 superconductors.


Author(s):  
G.D. Danilatos

Over recent years a new type of electron microscope - the environmental scanning electron microscope (ESEM) - has been developed for the examination of specimen surfaces in the presence of gases. A detailed series of reports on the system has appeared elsewhere. A review summary of the current state and potential of the system is presented here.The gas composition, temperature and pressure can be varied in the specimen chamber of the ESEM. With air, the pressure can be up to one atmosphere (about 1000 mbar). Environments with fully saturated water vapor only at room temperature (20-30 mbar) can be easily maintained whilst liquid water or other solutions, together with uncoated specimens, can be imaged routinely during various applications.


Author(s):  
Y. Taniguchi ◽  
E. Nakazawa ◽  
S. Taya

Imaging energy filters can add new information to electron microscopic images with respect to energy-axis, so-called electron spectroscopic imaging (ESI). Recently, many good results have been reported using this imaging technique. ESI also allows high-contrast observation of unstained biological samples, becoming a trend of the field of morphology. We manufactured a new type of energy filter as a trial production. This energy filter consists of two magnets, and we call γ-filter since the trajectory of electrons shows ‘γ’-shape inside the filter. We evaluated the new energyγ-filter TEM with the γ-filter.Figure 1 shows schematic view of the electron optics of the γ-type energy filter. For the determination of the electron-optics of the γ-type energy filter, we used the TRIO (Third Order Ion Optics) program which has been developed for the design of high resolution mass spectrometers. The TRIO takes the extended fringing fields (EFF) into consideration. EFF makes it difficult to design magnetic energy filters with magnetic sector fields.


Author(s):  
N. Mori ◽  
T. Oikawa ◽  
Y. Harada ◽  
J. Miyahara ◽  
T. Matsuo

The Imaging Plate (IP) is a new type imaging device, which was developed for diagnostic x ray imaging. We have reported that usage of the IP for a TEM has many merits; those are high sensitivity, wide dynamic range, and good linearity. However in the previous report the reading system was prototype drum-type-scanner, and IP was also experimentally made, which phosphor layer was 50μm thick with no protective layer. So special care was needed to handle them, and they were used only to make sure the basic characteristics. In this article we report the result of newly developed reading, printing system and high resolution IP for practical use. We mainly discuss the characteristics of the IP here. (Precise performance concerned with the reader and other system are reported in the other article.)Fig.1 shows the schematic cross section of the IP. The IP consists of three parts; protective layer, phosphor layer and support.


Author(s):  
H. Weiland ◽  
D. P. Field

Recent advances in the automatic indexing of backscatter Kikuchi diffraction patterns on the scanning electron microscope (SEM) has resulted in the development of a new type of microscopy. The ability to obtain statistically relevant information on the spatial distribution of crystallite orientations is giving rise to new insight into polycrystalline microstructures and their relation to materials properties. A limitation of the technique in the SEM is that the spatial resolution of the measurement is restricted by the relatively large size of the electron beam in relation to various microstructural features. Typically the spatial resolution in the SEM is limited to about half a micron or greater. Heavily worked structures exhibit microstructural features much finer than this and require resolution on the order of nanometers for accurate characterization. Transmission electron microscope (TEM) techniques offer sufficient resolution to investigate heavily worked crystalline materials.Crystal lattice orientation determination from Kikuchi diffraction patterns in the TEM (Figure 1) requires knowledge of the relative positions of at least three non-parallel Kikuchi line pairs in relation to the crystallite and the electron beam.


1951 ◽  
Vol 23 (3) ◽  
pp. 428-427 ◽  
Author(s):  
J. M. Miller ◽  
J. G. Kirchner

Sign in / Sign up

Export Citation Format

Share Document