Landslide Susceptibility Model Validation: A Routine Starting from Landslide Inventory to Susceptibility

Author(s):  
Gulseren Dagdelenler ◽  
Hakan A. Nefeslioglu ◽  
Candan Gokceoglu
2020 ◽  
Author(s):  
Chunhung Wu

<p>This research is concerned with the prediction accuracy and applicability of statistical landslide susceptibility model to the areas with dense landslide distribution caused by extreme rainfall events and how to draw the annual landslide susceptibility maps after the extreme rainfall events. The landslide induced by 2009 Typhoon Morakot, i.e. an extreme rainfall event, in the Chishan river watershed is dense distributed. We compare the annual landslide inventories in the following 5 years after 2009 Typhoon Morakot and finds the similarity of landslide distribution.</p><p>The landslide distributions from 2008 to 2014 are concentrated in the midstream and upstream watersheds. The landslide counts and area in 2009 are 3.4 times and 7.4 times larger than those in 2008 due to 2009 Typhoon Morakot. The landslide counts and area in 2014 are only 69.8% and 53.4 % of those in 2009. The landslide area from 2010 to 2014 shows that the landslide area in the following years after 2009 Typhoon Morakot gradually decreases if without any heavy rainfall event with more accumulated rainfall than that during 2009 Typhoon Morakot.</p><p>The landslide ratio in the upstream watershed in 2008 is 1.37%, and that from 2009 to 2014 are over 3.51%. The landslide ratio in the upstream watershed in 2014 is 1.17 times larger than that in 2009. On average, the landslide inventory from 2010 to 2014 in the upstream watershed is composed of 60.1 % old landslide originated from 2009 Typhoon Morakot and 39.9 % new landslide.</p><p>The landslide ratio in the midstream watershed reaches peak (9.19%) in 2009 and decreases gradually to 2.56 % in 2014. The landslide ratio in 2014 in the midstream watershed is only 27.9% of that in 2009, and that means around 72.1 % of landslide area in 2009 in the midstream watershed has recovered. On average, the landslide inventory from 2010 to 2014 in the midstream watershed is composed of 76.1 % old landslide originated from 2009 Typhoon Morakot and 23.9 % new landslide.</p><p>The research uses the landslide area in 2009 and 2014 in the same subareas to calculate the expanding or contracting ratio of landslide area. The contracting ratio of riverbank and non-riverbank landslide area in the midstream watershed are 0.760 and 0.788, while that in the downstream watershed are 0.732 and 0.789. The expanding ratio of riverbank and non-riverbank landslide area in the upstream watershed are 1.04 and 1.02.</p><p>The annual landslide susceptibility in each subarea in the Chishan river watershed in a specific year from 2010 to 2014 is the production of landslide susceptibility in 2009 and the contraction or expanding ratio to the Nth power, and the N number is how many years between 2009 and the specific year. We adopt the above-mentioned equation and the landslide susceptibility model based on the landslide inventory after 2009 Typhoon Morakot to draw the annual landslide susceptibility maps in 2010 to 2014. The mean correct ratio value of landslide susceptibility model in 2009 is 70.9%, and that from 2010 to 2014 are 62.5% to 73.8%.</p>


2021 ◽  
Author(s):  
Mehmet Emin Cihangir

Abstract This study aims to determine how to choose the correct parameter for a specific study area in landslide susceptibility and how it gives results in vector or raster-based models. In the literature, factor parameters of landslide preparing and triggering conditions are used deliberately or randomly in raster or vector-based models. In this study, the landslide inventory was analyzed together with geological, topographic-morphological, environmental, and triggering parameters, and the parameters specific to the study area and its scale were decided. In order to obtain high efficiency from the models, the parameter data were taken from the landslide depletion zone. Raster-based models and vector-based models were created according to qualitative and quantitative approaches. Model outputs resulted in close Roc Curve results ranging from 0.79 to 0.92. The study area was divided into slope units and then the model output data were transferred to these units. In order to make the result easier to use, the units obtained according to the result of each model were combined, thus a single map output was obtained from 5 different raster and vector-based models. Overall, this study presents 1) the importance of the use of landslide inventory and how to use the inventory. 2) Parameters should be selected according to field analysis and field-scale rather than randomly. 3) By combining raster and vector-based on landslide susceptibility studies, make it easier to use as a base map in hazard and risk studies with a single output.


2021 ◽  
Vol 13 (13) ◽  
pp. 2546
Author(s):  
Xinyi Guo ◽  
Bihong Fu ◽  
Jie Du ◽  
Pilong Shi ◽  
Qingyu Chen ◽  
...  

It is crucial to explore a suitable landslide susceptibility model with an excellent prediction capability for rapid evaluation and disaster relief in seismic regions with different lithological features. In this study, we selected two typical seismic events, the Jiuzhaigou and Minxian earthquakes, which occurred in the Alpine karst and loess regions, respectively. Eight influencing factors and five models were chosen to calculate the susceptibility of landslide, including the information (I) model, certainty factor (CF) model, logistic regression (LR) model, I + LR coupling model, and CF + LR coupling model. Then, the accuracy and the landslide susceptibility distribution of these models were assessed by the area under curve (AUC) and distribution criteria. Finally, the model with high accuracy and good applicability for the rock landslide or loess landslide regions was optimized. Our results showed that the accuracy of the coupling model is higher than that of the single models. Except for the LR model, the landslide susceptibility distribution for the above-mentioned models is consistent with universal cognition. The coupling models are generally better than their single models. Among them, the I + LR model can obtain the best comprehensive results for assessing the distribution and accuracy of both rock and loess landslide susceptibility, which is helpful for disaster relief and policy-making, and it can also provide useful scientific data for post-seismic reconstruction and restoration.


2013 ◽  
Vol 57 (3) ◽  
pp. 371-385 ◽  
Author(s):  
Gabriel Legorreta Paulín ◽  
Marcus Bursik ◽  
María Teresa Ramírez-Herrera ◽  
Trevor Contreras ◽  
Michael Polenz ◽  
...  

2013 ◽  
Vol 13 (4) ◽  
pp. 949-963 ◽  
Author(s):  
G. De Guidi ◽  
S. Scudero

Abstract. Many destructive shallow landslides hit villages in the Peloritani Mountains area (Sicily, Italy) on 1 October 2009 after heavy rainfall. The collection of several types of spatial data, together with a landslide inventory, allows the assessment of the landslide susceptibility by applying a statistical technique. The susceptibility model was validated by performing an analysis in a test area using independent landslide information, the results being able to correctly predict more than 70% of the landslides. Furthermore, the susceptibility analysis allowed the identification of which combinations of classes, within the different factors, have greater relevance in slope instability, and afterwards associating the most unstable combinations (with a short–medium term incidence) with the endogenic processes acting in the area (huge regional uplift, fault activity). Geological and tectonic history are believed to be key to interpreting morphological processes and landscape evolution. Recent tectonic activity was found to be a very important controlling factor in landscape evolution. A geomorphological model of cyclical relief evolution is proposed in which endogenic processes are directly linked to superficial processes. The results are relevant both to risk reduction and the understanding of active geological dynamics.


2021 ◽  
Vol 14 (11) ◽  
pp. 44-56
Author(s):  
Abhijit S. Patil ◽  
Bidyut K. Bhadra ◽  
Sachin S. Panhalkar ◽  
Sudhir K. Powar

Almost every year, the Himalayan region suffers from a landslide disaster that is directly associated with the prosperity and development of the area. The study of landslide disasters helps planners, decision-makers and local communities for the development of anthropogenic structures in order to enhance the safety of society. Therefore, the prime aim of this research is to produce the landslide susceptibility map for the Chenab river valley using the bi-variate statistical information value model to detect and demarcate the areas of potential landslide incidence. The object-based image analysis method identified about 84 potential sites of landslides as landslide inventory. The statistical information value model is derived from the landslide inventory and multiple causative factors. The outcome showed that 23% area of the Chenab river valley falls into the class of a very high landslide susceptibility zone. The ROC curve method is used to validate the model which denoted the acceptable result for the landslide susceptibility zonation with 0.826 AUC value for the Chenab river valley.


2020 ◽  
Author(s):  
Sandip Som ◽  
Saibal Ghosh ◽  
Soumitra Dasgupta ◽  
Thrideep Kumar ◽  
J. N. Hindayar ◽  
...  

Abstract Modeling landslide susceptibility is one of the important aspects of land use planning and risk management. Several modeling methods are available based either on highly specialized knowledge on causative attributes or on good landslide inventory data to use as training and testing attribute on model development. Understandably, these two criteria are rarely available for local land regulators. This paper presents a new model methodology, which requires minimum knowledge of causative attributes and does not depend on landslide inventory. As landslide causes due to the combined effect of causative attributes, this model utilizes communality (common variance) of the attributes, extracted by exploratory factor analysis and used for calculation of landslide susceptibility index. The model can understand the inter-relationship of different geo-environmental attributes responsible for landslide along with identification and prioritization of attributes on model performance to delineate non-performing attributes. Finally, the model performance is compared with the well established AHP method (knowledge driven) and FRM method (data driven) by cut-off independent ROC curves along with cost-effectiveness. The model shows it’s performance almost at par with the established models, involving minimum modeling expertise. The findings and results of the present work will be helpful for the town planners and engineers on a regional scale for generalized planning and assessment.


2020 ◽  
Vol 10 (18) ◽  
pp. 6335 ◽  
Author(s):  
Kamila Pawluszek-Filipiak ◽  
Natalia Oreńczak ◽  
Marta Pasternak

To mitigate the negative effects of landslide occurrence, there is a need for effective landslide susceptibility mapping (LSM). The fundamental source for LSM is landslide inventory. Unfortunately, there are still areas where landslide inventories are not generated due to financial or reachability constraints. Considering this led to the following research question: can we model landslide susceptibility in an area for which landslide inventory is not available but where such is available for surrounding areas? To answer this question, we performed cross-modeling by using various strategies for landslide susceptibility. Namely, landslide susceptibility was cross-modeled by using two adjacent regions (“Łososina” and “Gródek”) separated by the Rożnów Lake and Dunajec River. Thus, 46% and 54% of the total detected landslides were used for the LSM in “Łososina” and “Gródek” model, respectively. Various topographical, geological, hydrological and environmental landslide-conditioning factors (LCFs) were created. These LCFs were generated on the basis of the Digital Elevation Model (DEM), Sentinel-2A data, a digitized geological and soil suitability map, precipitation, the road network and the Różnów lake shapefile. For LSM, we applied the Frequency Ratio (FR) and Landslide Susceptibility Index (LSI) methods. Five zones showing various landslide susceptibilities were generated via Natural Jenks. The Seed Cell Area Index (SCAI) and Relative Landslide Density Index were used for model validation. Even when the SCAI indicated extremely high values for “very low” susceptibility classes and very small values for “very high” susceptibility classes in the training and validation areas, the accuracy of the LSM in the validation areas was significantly lower. In the “Łososina” model, 90% and 57% of the landslides fell into the “high” and “very high” susceptibility zones in the training and validation areas, respectively. In the “Gródek” model, 86% and 46% of the landslides fell into the “high” and “very high” susceptibility zones in the training and validation areas, respectively. Moreover, the comparison between these two models was performed. Discrepancies between these two models exist in the areas of critical geological structures (thrust and fault proximity), and the reliability for such susceptibility zones can be low (2–3 susceptibility zone difference). However, such areas cover only 11% of the analyzed area; thus, we can conclude that in remaining regions (89%), LSM generated by the inventory for the surrounding area can be useful. Therefore, the low reliability of such a map in areas of critical geological structures should be borne in mind.


2009 ◽  
Vol 9 (3) ◽  
pp. 687-698 ◽  
Author(s):  
A. Günther ◽  
C. Thiel

Abstract. In this contribution we evaluated both the structurally-controlled failure susceptibility of the fractured Cretaceous chalk rocks and the topographically-controlled shallow landslide susceptibility of the overlying glacial sediments for the Jasmund cliff area on Rügen Island, Germany. We employed a combined methodology involving spatially distributed kinematical rock slope failure testing with tectonic fabric data, and both physically- and inventory-based shallow landslide susceptibility analysis. The rock slope failure susceptibility model identifies areas of recent cliff collapses, confirming its value in predicting the locations of future failures. The model reveals that toppling is the most important failure type in the Cretaceous chalk rocks of the area. The shallow landslide susceptibility analysis involves a physically-based slope stability evaluation which utilizes material strength and hydraulic conductivity data, and a bivariate landslide susceptibility analysis exploiting landslide inventory data and thematic information on ground conditioning factors. Both models show reasonable success rates when evaluated with the available inventory data, and an attempt was made to combine the individual models to prepare a map displaying both terrain instability and landslide susceptibility. This combination highlights unstable cliff portions lacking discrete landslide areas as well as cliff sections highly affected by past landslide events. Through a spatial integration of the rock slope failure susceptibility model with the combined shallow landslide assessment we produced a comprehensive landslide susceptibility map for the Jasmund cliff area.


Sign in / Sign up

Export Citation Format

Share Document