scholarly journals A Hybrid Landslide Susceptibility Model Obtained from Different Models (Raster or Vector, Expert or Semi-Expert) with the Correct Parameter

Author(s):  
Mehmet Emin Cihangir

Abstract This study aims to determine how to choose the correct parameter for a specific study area in landslide susceptibility and how it gives results in vector or raster-based models. In the literature, factor parameters of landslide preparing and triggering conditions are used deliberately or randomly in raster or vector-based models. In this study, the landslide inventory was analyzed together with geological, topographic-morphological, environmental, and triggering parameters, and the parameters specific to the study area and its scale were decided. In order to obtain high efficiency from the models, the parameter data were taken from the landslide depletion zone. Raster-based models and vector-based models were created according to qualitative and quantitative approaches. Model outputs resulted in close Roc Curve results ranging from 0.79 to 0.92. The study area was divided into slope units and then the model output data were transferred to these units. In order to make the result easier to use, the units obtained according to the result of each model were combined, thus a single map output was obtained from 5 different raster and vector-based models. Overall, this study presents 1) the importance of the use of landslide inventory and how to use the inventory. 2) Parameters should be selected according to field analysis and field-scale rather than randomly. 3) By combining raster and vector-based on landslide susceptibility studies, make it easier to use as a base map in hazard and risk studies with a single output.

2020 ◽  
Author(s):  
Chunhung Wu

<p>This research is concerned with the prediction accuracy and applicability of statistical landslide susceptibility model to the areas with dense landslide distribution caused by extreme rainfall events and how to draw the annual landslide susceptibility maps after the extreme rainfall events. The landslide induced by 2009 Typhoon Morakot, i.e. an extreme rainfall event, in the Chishan river watershed is dense distributed. We compare the annual landslide inventories in the following 5 years after 2009 Typhoon Morakot and finds the similarity of landslide distribution.</p><p>The landslide distributions from 2008 to 2014 are concentrated in the midstream and upstream watersheds. The landslide counts and area in 2009 are 3.4 times and 7.4 times larger than those in 2008 due to 2009 Typhoon Morakot. The landslide counts and area in 2014 are only 69.8% and 53.4 % of those in 2009. The landslide area from 2010 to 2014 shows that the landslide area in the following years after 2009 Typhoon Morakot gradually decreases if without any heavy rainfall event with more accumulated rainfall than that during 2009 Typhoon Morakot.</p><p>The landslide ratio in the upstream watershed in 2008 is 1.37%, and that from 2009 to 2014 are over 3.51%. The landslide ratio in the upstream watershed in 2014 is 1.17 times larger than that in 2009. On average, the landslide inventory from 2010 to 2014 in the upstream watershed is composed of 60.1 % old landslide originated from 2009 Typhoon Morakot and 39.9 % new landslide.</p><p>The landslide ratio in the midstream watershed reaches peak (9.19%) in 2009 and decreases gradually to 2.56 % in 2014. The landslide ratio in 2014 in the midstream watershed is only 27.9% of that in 2009, and that means around 72.1 % of landslide area in 2009 in the midstream watershed has recovered. On average, the landslide inventory from 2010 to 2014 in the midstream watershed is composed of 76.1 % old landslide originated from 2009 Typhoon Morakot and 23.9 % new landslide.</p><p>The research uses the landslide area in 2009 and 2014 in the same subareas to calculate the expanding or contracting ratio of landslide area. The contracting ratio of riverbank and non-riverbank landslide area in the midstream watershed are 0.760 and 0.788, while that in the downstream watershed are 0.732 and 0.789. The expanding ratio of riverbank and non-riverbank landslide area in the upstream watershed are 1.04 and 1.02.</p><p>The annual landslide susceptibility in each subarea in the Chishan river watershed in a specific year from 2010 to 2014 is the production of landslide susceptibility in 2009 and the contraction or expanding ratio to the Nth power, and the N number is how many years between 2009 and the specific year. We adopt the above-mentioned equation and the landslide susceptibility model based on the landslide inventory after 2009 Typhoon Morakot to draw the annual landslide susceptibility maps in 2010 to 2014. The mean correct ratio value of landslide susceptibility model in 2009 is 70.9%, and that from 2010 to 2014 are 62.5% to 73.8%.</p>


2018 ◽  
Vol 7 (9) ◽  
pp. 374 ◽  
Author(s):  
Cheng-Chien Liu ◽  
Wei Luo ◽  
Hsiao-Wei Chung ◽  
Hsiao-Yuan Yin ◽  
Ke-Wei Yan

A landslide inventory serves as the basis for assessing landslide susceptibility, hazard, and risk. It is generally prepared from optical imagery acquired from spaceborne or airborne platforms, in which shadows are inevitably found in mountainous areas. The influences of shadow inventory on a landslide susceptibility model (LSM), however, have not been investigated systematically. This paper employs both the shadow and landslide inventories prepared from eleven Formosat-2 annual images from the I-Lan area in Taiwan acquired from 2005 to 2016, using a semiautomatic expert system. A standard LSM based on the geometric mean of multivariables was used to evaluate the possible errors incurred by neglecting the shadow inventory. The results show that the LSM performance was significantly improved by 49.21% for the top 1% of the most highly susceptible area and that the performance decreased gradually by 15.25% for the top 10% most highly susceptible areas and 9.71% for the top 20% most highly susceptible areas. Excluding the shadow inventory from the calculation of landslide susceptibility index reveals the real contribution of each factor. They are crucial in optimizing the coefficients of a nondeterministic geometric mean LSM, as well as in deriving the threshold of a landslide hazard early warning system.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2234
Author(s):  
Hongye Zhang ◽  
Zezhao Wen ◽  
Francesco Grilli ◽  
Konstantinos Gyftakis ◽  
Markus Mueller

Superconductor technology has recently attracted increasing attention in power-generation- and electrical-propulsion-related domains, as it provides a solution to the limited power density seen by the core component, electrical machines. Superconducting machines, characterized by both high power density and high efficiency, can effectively reduce the size and mass compared to conventional machine designs. This opens the way to large-scale purely electrical applications, e.g., all-electrical aircrafts. The alternating current (AC) loss of superconductors caused by time-varying transport currents or magnetic fields (or both) has impaired the efficiency and reliability of superconducting machines, bringing severe challenges to the cryogenic systems, too. Although much research has been conducted in terms of the qualitative and quantitative analysis of AC loss and its reduction methods, AC loss remains a crucial problem for the design of highly efficient superconducting machines, especially for those operating at high speeds for future aviation. Given that a critical review on the research advancement regarding the AC loss of superconductors has not been reported during the last dozen years, especially combined with electrical machines, this paper aims to clarify its research status and provide a useful reference for researchers working on superconducting machines. The adopted superconducting materials, analytical formulae, modelling methods, measurement approaches, as well as reduction techniques for AC loss of low-temperature superconductors (LTSs) and high-temperature superconductors (HTSs) in both low- and high-frequency fields have been systematically analyzed and summarized. Based on the authors’ previous research on the AC loss characteristics of HTS coated conductors (CCs), stacks, and coils at high frequencies, the challenges for the existing AC loss quantification methods have been elucidated, and multiple suggestions with respect to the AC loss reduction in superconducting machines have been put forward. This article systematically reviews the qualitative and quantitative analysis methods of AC loss as well as its reduction techniques in superconductors applied to electrical machines for the first time. It is believed to help deepen the understanding of AC loss and deliver a helpful guideline for the future development of superconducting machines and applied superconductivity.


2021 ◽  
Vol 13 (13) ◽  
pp. 2546
Author(s):  
Xinyi Guo ◽  
Bihong Fu ◽  
Jie Du ◽  
Pilong Shi ◽  
Qingyu Chen ◽  
...  

It is crucial to explore a suitable landslide susceptibility model with an excellent prediction capability for rapid evaluation and disaster relief in seismic regions with different lithological features. In this study, we selected two typical seismic events, the Jiuzhaigou and Minxian earthquakes, which occurred in the Alpine karst and loess regions, respectively. Eight influencing factors and five models were chosen to calculate the susceptibility of landslide, including the information (I) model, certainty factor (CF) model, logistic regression (LR) model, I + LR coupling model, and CF + LR coupling model. Then, the accuracy and the landslide susceptibility distribution of these models were assessed by the area under curve (AUC) and distribution criteria. Finally, the model with high accuracy and good applicability for the rock landslide or loess landslide regions was optimized. Our results showed that the accuracy of the coupling model is higher than that of the single models. Except for the LR model, the landslide susceptibility distribution for the above-mentioned models is consistent with universal cognition. The coupling models are generally better than their single models. Among them, the I + LR model can obtain the best comprehensive results for assessing the distribution and accuracy of both rock and loess landslide susceptibility, which is helpful for disaster relief and policy-making, and it can also provide useful scientific data for post-seismic reconstruction and restoration.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Yu Zhai ◽  
Ding Xu ◽  
Yan Zhang

This paper presents a lightweight, cost-efficient, wideband, and high-gain 3D printed parabolic reflector antenna in the Ka-band. A 10 λ reflector is printed with polylactic acid- (PLA-) based material that is a biodegradable type of plastic, preferred in 3D printing. The reflecting surface is made up of multiple stacked layers of copper tape, thick enough to function as a reflecting surface (which is found 4 mm). A conical horn is used for the incident field. A center-fed method has been used to converge the energy in the broadside direction. The proposed antenna results measured a gain of 27.8 dBi, a side lobe level (SLL) of −22 dB, and a maximum of 61.2% aperture efficiency (at 30 GHz). A near-field analysis in terms of amplitude and phase has also been presented which authenticates the accurate spherical to planar wavefront transformation in the scattered field.


2013 ◽  
Vol 57 (3) ◽  
pp. 371-385 ◽  
Author(s):  
Gabriel Legorreta Paulín ◽  
Marcus Bursik ◽  
María Teresa Ramírez-Herrera ◽  
Trevor Contreras ◽  
Michael Polenz ◽  
...  

2013 ◽  
Vol 13 (4) ◽  
pp. 949-963 ◽  
Author(s):  
G. De Guidi ◽  
S. Scudero

Abstract. Many destructive shallow landslides hit villages in the Peloritani Mountains area (Sicily, Italy) on 1 October 2009 after heavy rainfall. The collection of several types of spatial data, together with a landslide inventory, allows the assessment of the landslide susceptibility by applying a statistical technique. The susceptibility model was validated by performing an analysis in a test area using independent landslide information, the results being able to correctly predict more than 70% of the landslides. Furthermore, the susceptibility analysis allowed the identification of which combinations of classes, within the different factors, have greater relevance in slope instability, and afterwards associating the most unstable combinations (with a short–medium term incidence) with the endogenic processes acting in the area (huge regional uplift, fault activity). Geological and tectonic history are believed to be key to interpreting morphological processes and landscape evolution. Recent tectonic activity was found to be a very important controlling factor in landscape evolution. A geomorphological model of cyclical relief evolution is proposed in which endogenic processes are directly linked to superficial processes. The results are relevant both to risk reduction and the understanding of active geological dynamics.


Author(s):  
Ming-gao Tan ◽  
Hou-lin Liu ◽  
Shou-qi Yuan ◽  
Yong Wang ◽  
Kai Wang

The present deficiency about numerical simulation research on blade outlet width of centrifugal pumps is pointed out. In the case of different outlet widths, the flow field in six centrifugal pumps whose specific speed vary from 45 to 260 are simulated by using commercial code FLUENT and the characteristics are predicted. The standard k-ε turbulence model and SIMPLEC algorithm are chosen in FLUENT. The simulation is steady and moving reference frame is used to consider rotor-stator interaction. The research results show that the change of impeller outlet width has obvious impacts on characteristics at design point, flow field and the shape of performance curves. At nominal condition, the change of outlet width has more important effects on moderate specific speed centrifugal pumps. The flow field analysis indicates that blade outlet width change has an important effect on the location and area of low pressure region behind the blade inlet, jet-wake structure in impellers, the secondary flow in volute cross section and the back flow in impellers. The head-flow curve becomes more flat with the increase of outlet width. For moderate and low specific speed centrifugal pumps, the high efficiency area of efficiency-flow curve get bigger with the increase of outlet width and the area will be constant within certain outlet width change scope for high specific speed centrifugal pump. The research results agree well with experiment results.


Sign in / Sign up

Export Citation Format

Share Document