Stability Analysis of an Unbalanced Journal Bearing with Nonlinear Hydrodynamic Forces

Author(s):  
Radhouane Sghir ◽  
Mnaouar Chouchane
2019 ◽  
Vol 71 (1) ◽  
pp. 31-39
Author(s):  
Subrata Das ◽  
Sisir Kumar Guha

Purpose The purpose of this paper is to investigate the effect of turbulence on the stability characteristics of finite hydrodynamic journal bearing lubricated with micropolar fluid. Design/methodology/approach The non-dimensional transient Reynolds equation has been solved to obtain the non-dimensional pressure field which in turn used to obtain the load carrying capacity of the bearing. The second-order equations of motion applicable for journal bearing system have been solved using fourth-order Runge–Kutta method to obtain the stability characteristics. Findings It has been observed that turbulence has adverse effect on stability and the whirl ratio at laminar flow condition has the lowest value. Practical implications The paper provides the stability characteristics of the finite journal bearing lubricated with micropolar fluid operating in turbulent regime which is very common in practical applications. Originality/value Non-linear stability analysis of micropolar fluid lubricated journal bearing operating in turbulent regime has not been reported in literatures so far. This paper is an effort to address the problem of non-linear stability of journal bearings under micropolar lubrication with turbulent effect. The results obtained provide useful information for designing the journal bearing system for high speed applications.


Author(s):  
T. V. V. L. N. Rao ◽  
Ahmad Majdi Abdul Rani ◽  
Norani Muti Mohamed ◽  
Hamdan Haji Ya ◽  
Mokhtar Awang ◽  
...  

Author(s):  
Hammam Zeitoun ◽  
Masˇa Brankovic´ ◽  
Knut To̸rnes ◽  
Simon Wong ◽  
Eve Hollingsworth ◽  
...  

One of the main aspects of subsea pipeline design is ensuring pipeline stability on the seabed under the action of hydrodynamic loads. Hydrodynamic loads acting on Piggyback Pipeline Systems have traditionally been determined by pipeline engineers using an ‘equivalent pipeline diameter’ approach. The approach is simple and assumes that hydrodynamic loads on the Piggyback Pipeline System are equal to the loads on a single pipeline with diameter equal to the projected height of the piggyback bundle (the sum of the large diameter pipeline, small diameter pipeline and gap between the pipelines) [1]. Hydrodynamic coefficients for single pipelines are used in combination with the ‘equivalent diameter pipe’ to determine the hydrodynamic loads on the Piggyback Pipeline System. In order to assess more accurately the dynamic response of a Piggyback Pipeline System, an extensive set of physical model tests has been performed to measure hydrodynamic forces on a Piggyback Pipeline System in combined waves and currents conditions, and to determine in-line and lift force coefficients which can be used in a dynamic stability analysis to generate the hydrodynamic forces on the pipeline [2]. This paper describes the implementation of the model testing results in finite elements dynamic stability analysis and presents a case study where the dynamic response of a Piggyback Pipeline System was assessed using both the conventional ‘equivalent diameter approach’ and the hydrodynamic coefficients determined using model testing. The responses predicted using both approaches were compared and key findings presented in the paper, in terms of adequacy of the equivalent diameter approach, and effect of piggyback gap (separation between the main line and the secondary line) on the response.


2016 ◽  
Vol 68 (3) ◽  
pp. 386-391 ◽  
Author(s):  
Abhishek Ghosh ◽  
Sisir Kumar Guha

Purpose Several researchers have observed that to satisfy modern day’s need, it is essential to enhance the characteristics of journal bearing, which is used in numerous applications. Moreover, the use of Newtonian fluid as a lubricant is diminishing day by day, and the use of Non-Newtonian fluids is coming more into picture. Furthermore, if turbo-machinery applications are taken into account, then it can be seen that journal bearings are used for high speed applications as well. Thus, neglecting turbulent conditions may lead to erroneous results. Hence, this paper aims to present focuses on studying the stability characteristics of finite hydrodynamic journal bearing under turbulent coupled-stress lubrication. Design/methodology/approach First, the governing equation relevant to the problem is generated. Then, the dynamic analysis is carried out by linear perturbation technique, leading to three perturbed equations, which are again discretized by finite difference method. Finally, these discretized equations are solved with the help of Gauss-Seidel Iteration technique with successive over relaxation scheme. Consequently, the film response coefficients and the stability parameters are evaluated at different parametric conditions. Findings It has been concluded from the study that with increase in value of the coupled-stress parameter, the stability of the journal may increase. Whereas, with increase in Reynolds number, the stability of the journal decreases. On the other hand, stability increases with increasing values of slenderness ratio. Originality/value Researches have been performed to study the dynamic characteristics of journal bearing with non-Newtonian fluid as the lubricant. But in the class of non-Newtonian lubricants, the use of coupled-stress fluid has not yet been properly investigated. So, an attempt has been made to perform the stability analysis of bearings with coupled-stress fluid as the advanced lubricant.


Author(s):  
Katsuhisa Fujita ◽  
Atsuhiko Shintani ◽  
Koji Yoshioka ◽  
Kouhei Okuno ◽  
Hiroaki Tanaka ◽  
...  

Recently, in many areas such as computers and information equipments etc., the fluid journal bearings are required to rotate at higher speed. To satisfy this requirement, the strictly stability analysis of the journal is indispensable. In this paper, we investigate the stability analysis of the dynamic behavior of the fluid plain journal bearing with an incompressible fluid considering the nonlinear terms of fluid forces. The stability analysis is examined by the numerical simulations on each model of a rigid rotor and a flexible rotor. The stable regions by nonlinear analysis are compared with the regions by classical linear analysis. Performing the nonlinear simulation analysis, it becomes clear that there is rather a stable region which amplitude does not grow up abruptly, and this phenomenon can not only be pointed out, but also is judged to be unstable by linear stable analysis. Finally, the experiment using actual bearings is performed and compared with the numerical results.


2008 ◽  
Vol 41 (5) ◽  
pp. 434-442 ◽  
Author(s):  
Nicoleta M. Ene ◽  
Florin Dimofte ◽  
Theo G. Keith

2016 ◽  
Vol 10 (1) ◽  
pp. 19-25 ◽  
Author(s):  
T. V. V. L. N. Rao ◽  
A. M. A. Rani ◽  
M. Awang ◽  
T. Nagarajan ◽  
F. M. Hashim

Author(s):  
Alejandro Cerda Varela ◽  
Ilmar Ferreira Santos

This work is aimed at theoretically study the dynamic behavior of a rotor-tilting pad journal bearing system under different lubrication regimes, namely thermohydrodynamic (THD), elastohydrodynamic (EHD) and hybrid lubrication regime. The rotor modeled corresponds to an industrial compressor. Special emphasis is put on analyzing the stability map of the rotor when the different lubrication regimes are included into the TPJB modeling. Results show that, for the studied rotor, the inclusion of a THD model is more relevant when compared to an EHD model, as it implies a reduction on the instability onset speed for the rotor. Also, results show the feasibility of extending the stable operating range of the rotor by implementing a hybrid lubrication regime.


Sign in / Sign up

Export Citation Format

Share Document