Learning Hierarchical Feature Representation in Depth Image

Author(s):  
Yazhou Liu ◽  
Pongsak Lasang ◽  
Quansen Sun ◽  
Mel Siegel
2017 ◽  
Vol 39 (6) ◽  
pp. 106-121
Author(s):  
A. O. Verpahovskaya ◽  
V. N. Pilipenko ◽  
Е. V. Pylypenko

2019 ◽  
Author(s):  
Han-Chi Hsieh ◽  
Wei-Zhong Zheng ◽  
Ko-Chiang Chen ◽  
Ying-Hui Lai

Author(s):  
Alice Rueda ◽  
J.C. Vásquez-Correa ◽  
Cristian David Rios-Urrego ◽  
Juan Rafael Orozco-Arroyave ◽  
Sridhar Krishnan ◽  
...  

2019 ◽  
Vol 20 (5) ◽  
pp. 565-578 ◽  
Author(s):  
Lidong Wang ◽  
Ruijun Zhang

Ubiquitination is an important post-translational modification (PTM) process for the regulation of protein functions, which is associated with cancer, cardiovascular and other diseases. Recent initiatives have focused on the detection of potential ubiquitination sites with the aid of physicochemical test approaches in conjunction with the application of computational methods. The identification of ubiquitination sites using laboratory tests is especially susceptible to the temporality and reversibility of the ubiquitination processes, and is also costly and time-consuming. It has been demonstrated that computational methods are effective in extracting potential rules or inferences from biological sequence collections. Up to the present, the computational strategy has been one of the critical research approaches that have been applied for the identification of ubiquitination sites, and currently, there are numerous state-of-the-art computational methods that have been developed from machine learning and statistical analysis to undertake such work. In the present study, the construction of benchmark datasets is summarized, together with feature representation methods, feature selection approaches and the classifiers involved in several previous publications. In an attempt to explore pertinent development trends for the identification of ubiquitination sites, an independent test dataset was constructed and the predicting results obtained from five prediction tools are reported here, together with some related discussions.


2020 ◽  
Vol 17 (4) ◽  
pp. 271-286
Author(s):  
Chang Xu ◽  
Limin Jiang ◽  
Zehua Zhang ◽  
Xuyao Yu ◽  
Renhai Chen ◽  
...  

Background: Protein-Protein Interactions (PPIs) play a key role in various biological processes. Many methods have been developed to predict protein-protein interactions and protein interaction networks. However, many existing applications are limited, because of relying on a large number of homology proteins and interaction marks. Methods: In this paper, we propose a novel integrated learning approach (RF-Ada-DF) with the sequence-based feature representation, for identifying protein-protein interactions. Our method firstly constructs a sequence-based feature vector to represent each pair of proteins, viaMultivariate Mutual Information (MMI) and Normalized Moreau-Broto Autocorrelation (NMBAC). Then, we feed the 638- dimentional features into an integrated learning model for judging interaction pairs and non-interaction pairs. Furthermore, this integrated model embeds Random Forest in AdaBoost framework and turns weak classifiers into a single strong classifier. Meanwhile, we also employ double fault detection in order to suppress over-adaptation during the training process. Results: To evaluate the performance of our method, we conduct several comprehensive tests for PPIs prediction. On the H. pyloridataset, our method achieves 88.16% accuracy and 87.68% sensitivity, the accuracy of our method is increased by 0.57%. On the S. cerevisiaedataset, our method achieves 95.77% accuracy and 93.36% sensitivity, the accuracy of our method is increased by 0.76%. On the Humandataset, our method achieves 98.16% accuracy and 96.80% sensitivity, the accuracy of our method is increased by 0.6%. Experiments show that our method achieves better results than other outstanding methods for sequence-based PPIs prediction. The datasets and codes are available at https://github.com/guofei-tju/RF-Ada-DF.git.


2019 ◽  
Vol 14 (6) ◽  
pp. 480-490 ◽  
Author(s):  
Tuncay Bayrak ◽  
Hasan Oğul

Background: Predicting the value of gene expression in a given condition is a challenging topic in computational systems biology. Only a limited number of studies in this area have provided solutions to predict the expression in a particular pattern, whether or not it can be done effectively. However, the value of expression for the measurement is usually needed for further meta-data analysis. Methods: Because the problem is considered as a regression task where a feature representation of the gene under consideration is fed into a trained model to predict a continuous variable that refers to its exact expression level, we introduced a novel feature representation scheme to support work on such a task based on two-way collaborative filtering. At this point, our main argument is that the expressions of other genes in the current condition are as important as the expression of the current gene in other conditions. For regression analysis, linear regression and a recently popularized method, called Relevance Vector Machine (RVM), are used. Pearson and Spearman correlation coefficients and Root Mean Squared Error are used for evaluation. The effects of regression model type, RVM kernel functions, and parameters have been analysed in our study in a gene expression profiling data comprising a set of prostate cancer samples. Results: According to the findings of this study, in addition to promising results from the experimental studies, integrating data from another disease type, such as colon cancer in our case, can significantly improve the prediction performance of the regression model. Conclusion: The results also showed that the performed new feature representation approach and RVM regression model are promising for many machine learning problems in microarray and high throughput sequencing analysis.


2019 ◽  
Vol 14 (5) ◽  
pp. 406-421 ◽  
Author(s):  
Ting-He Zhang ◽  
Shao-Wu Zhang

Background: Revealing the subcellular location of a newly discovered protein can bring insight into their function and guide research at the cellular level. The experimental methods currently used to identify the protein subcellular locations are both time-consuming and expensive. Thus, it is highly desired to develop computational methods for efficiently and effectively identifying the protein subcellular locations. Especially, the rapidly increasing number of protein sequences entering the genome databases has called for the development of automated analysis methods. Methods: In this review, we will describe the recent advances in predicting the protein subcellular locations with machine learning from the following aspects: i) Protein subcellular location benchmark dataset construction, ii) Protein feature representation and feature descriptors, iii) Common machine learning algorithms, iv) Cross-validation test methods and assessment metrics, v) Web servers. Result & Conclusion: Concomitant with a large number of protein sequences generated by highthroughput technologies, four future directions for predicting protein subcellular locations with machine learning should be paid attention. One direction is the selection of novel and effective features (e.g., statistics, physical-chemical, evolutional) from the sequences and structures of proteins. Another is the feature fusion strategy. The third is the design of a powerful predictor and the fourth one is the protein multiple location sites prediction.


2020 ◽  
Vol 16 (6) ◽  
pp. 3721-3730 ◽  
Author(s):  
Xiaofeng Yuan ◽  
Jiao Zhou ◽  
Biao Huang ◽  
Yalin Wang ◽  
Chunhua Yang ◽  
...  

2021 ◽  
Vol 40 (3) ◽  
pp. 1-12
Author(s):  
Hao Zhang ◽  
Yuxiao Zhou ◽  
Yifei Tian ◽  
Jun-Hai Yong ◽  
Feng Xu

Reconstructing hand-object interactions is a challenging task due to strong occlusions and complex motions. This article proposes a real-time system that uses a single depth stream to simultaneously reconstruct hand poses, object shape, and rigid/non-rigid motions. To achieve this, we first train a joint learning network to segment the hand and object in a depth image, and to predict the 3D keypoints of the hand. With most layers shared by the two tasks, computation cost is saved for the real-time performance. A hybrid dataset is constructed here to train the network with real data (to learn real-world distributions) and synthetic data (to cover variations of objects, motions, and viewpoints). Next, the depth of the two targets and the keypoints are used in a uniform optimization to reconstruct the interacting motions. Benefitting from a novel tangential contact constraint, the system not only solves the remaining ambiguities but also keeps the real-time performance. Experiments show that our system handles different hand and object shapes, various interactive motions, and moving cameras.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1962
Author(s):  
Enrico Buratto ◽  
Adriano Simonetto ◽  
Gianluca Agresti ◽  
Henrik Schäfer ◽  
Pietro Zanuttigh

In this work, we propose a novel approach for correcting multi-path interference (MPI) in Time-of-Flight (ToF) cameras by estimating the direct and global components of the incoming light. MPI is an error source linked to the multiple reflections of light inside a scene; each sensor pixel receives information coming from different light paths which generally leads to an overestimation of the depth. We introduce a novel deep learning approach, which estimates the structure of the time-dependent scene impulse response and from it recovers a depth image with a reduced amount of MPI. The model consists of two main blocks: a predictive model that learns a compact encoded representation of the backscattering vector from the noisy input data and a fixed backscattering model which translates the encoded representation into the high dimensional light response. Experimental results on real data show the effectiveness of the proposed approach, which reaches state-of-the-art performances.


Sign in / Sign up

Export Citation Format

Share Document