scholarly journals A Force-Based Model to Reproduce Stop-and-Go Waves in Pedestrian Dynamics

2016 ◽  
pp. 169-175 ◽  
Author(s):  
Mohcine Chraibi ◽  
Antoine Tordeux ◽  
Andreas Schadschneider
2016 ◽  
pp. 161-168
Author(s):  
Felix Dietrich ◽  
Stefan Disselnkötter ◽  
Gerta Köster

2020 ◽  
Vol 5 ◽  
Author(s):  
Andreas Schadschneider ◽  
Antoine Tordeux

Stop-and-go waves are a common feature of vehicular traffic and have also been observed in pedestrian flows. Usually the occurrence of this self-organization phenomenon is related to an inertia mechanism. It requires fine-tuning of the parameters and is described by instability and phase transitions. Here, we present a novel explanation for stop-and-go waves in pedestrian dynamics based on stochastic effects. By introducing coloured noise in a stable microscopic inertia-free (i.e. first order) model, pedestrian stop-and-go behaviour can be described realistically without requirement of instability and phase transition. We compare simulation results to empirical pedestrian trajectories and discuss plausible values for the model’s parameters.


2012 ◽  
Vol 31 ◽  
pp. 1060-1065 ◽  
Author(s):  
Hua Kuang ◽  
Yanhong Fan ◽  
Xingli Li ◽  
Lingjiang Kong

Algorithms ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 162
Author(s):  
Marion Gödel ◽  
Rainer Fischer ◽  
Gerta Köster

Microscopic crowd simulation can help to enhance the safety of pedestrians in situations that range from museum visits to music festivals. To obtain a useful prediction, the input parameters must be chosen carefully. In many cases, a lack of knowledge or limited measurement accuracy add uncertainty to the input. In addition, for meaningful parameter studies, we first need to identify the most influential parameters of our parametric computer models. The field of uncertainty quantification offers standardized and fully automatized methods that we believe to be beneficial for pedestrian dynamics. In addition, many methods come at a comparatively low cost, even for computationally expensive problems. This allows for their application to larger scenarios. We aim to identify and adapt fitting methods to microscopic crowd simulation in order to explore their potential in pedestrian dynamics. In this work, we first perform a variance-based sensitivity analysis using Sobol’ indices and then crosscheck the results by a derivative-based measure, the activity scores. We apply both methods to a typical scenario in crowd simulation, a bottleneck. Because constrictions can lead to high crowd densities and delays in evacuations, several experiments and simulation studies have been conducted for this setting. We show qualitative agreement between the results of both methods. Additionally, we identify a one-dimensional subspace in the input parameter space and discuss its impact on the simulation. Moreover, we analyze and interpret the sensitivity indices with respect to the bottleneck scenario.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 432
Author(s):  
Guenther Retscher ◽  
Alexander Leb

A guidance and information service for a University library based on Wi-Fi signals using fingerprinting as chosen localization method is under development at TU Wien. After a thorough survey of suitable location technologies for the application it was decided to employ mainly Wi-Fi for localization. For that purpose, the availability, performance, and usability of Wi-Fi in selected areas of the library are analyzed in a first step. These tasks include the measurement of Wi-Fi received signal strengths (RSS) of the visible access points (APs) in different areas. The measurements were carried out in different modes, such as static, kinematic and in stop-and-go mode, with six different smartphones. A dependence on the positioning and tracking modes is seen in the tests. Kinematic measurements pose much greater challenges and depend significantly on the duration of a single Wi-Fi scan. For the smartphones, the scan durations differed in the range of 2.4 to 4.1 s resulting in different accuracies for kinematic positioning, as fewer measurements along the trajectories are available for a device with longer scan duration. The investigations indicated also that the achievable localization performance is only on the few meter level due to the small number of APs of the University own Wi-Fi network deployed in the library. A promising solution for performance improvement is the foreseen usage of low-cost Raspberry Pi units serving as Wi-Fi transmitter and receiver.


2021 ◽  
Vol 11 (14) ◽  
pp. 6407
Author(s):  
Huiqi Liang ◽  
Wenbo Xie ◽  
Peizi Wei ◽  
Dehao Ai ◽  
Zhiqiang Zhang

As human occupancy has an enormous effect on the dynamics of light, flexible, large-span, low-damping structures, which are sensitive to human-induced vibrations, it is essential to investigate the effects of pedestrian–structure interaction. The single-degree-of-freedom (SDOF) mass–spring–damping (MSD) model, the simplest dynamical model that considers how pedestrian mass, stiffness and damping impact the dynamic properties of structures, is widely used in civil engineering. With field testing methods and the SDOF MSD model, this study obtained pedestrian dynamics parameters from measured data of the properties of both empty structures and structures with pedestrian occupancy. The parameters identification procedure involved individuals at four walking frequencies. Body frequency is positively correlated to the walking frequency, while a negative correlation is observed between the body damping ratio and the walking frequency. The test results further show a negative correlation between the pedestrian’s frequency and his/her weight, but no significant correlation exists between one’s damping ratio and weight. The findings provide a reference for structural vibration serviceability assessments that would consider pedestrian–structure interaction effects.


2019 ◽  
Vol 68 (3) ◽  
pp. 252-260
Author(s):  
Almut Balleer ◽  
Britta Gehrke ◽  
Brigitte Hochmuth ◽  
Christian Merkl

Abstract This article argues that short-time work stabilized employment in Germany substantially during the Great Recession in 2008/09. The labor market instrument acted in timely manner, as it was used in a rule-based fashion. In addition, discretionary extensions were effective due to their interaction with the business cycle. To ensure that short-time work will be effective in the future, this article proposes an automatic facilitation of the access to short-time work in severe recessions. This reduces the likelihood of a too extensive use at the wrong point in time as well as structural instead of cyclical interventions.


Sign in / Sign up

Export Citation Format

Share Document