A Possible Source Mechanism of the 1946 Unimak Alaska Far-Field Tsunami: Uplift of the Mid-Slope Terrace Above a Splay Fault Zone

Author(s):  
Roland von Huene ◽  
John J. Miller ◽  
Dirk Klaeschen ◽  
Peter Dartnell
2016 ◽  
Vol 173 (12) ◽  
pp. 4189-4201 ◽  
Author(s):  
Roland von Huene ◽  
John J. Miller ◽  
Dirk Klaeschen ◽  
Peter Dartnell

2020 ◽  
Author(s):  
Javiera Ruz ◽  
Muriel Gerbault ◽  
José Cembrano ◽  
Pablo Iturrieta ◽  
Camila Novoa Lizama ◽  
...  

<p> The Chilean margin is amongst the most active seismic and volcanic areas on Earth. It hosts active and fossil geothermal and mineralized systems of economic interest documenting significant geofluid migration through the crust. By comparing numerical models with field and geophysical data, we aim at pinning when and where fluid migration occurs through porous domains, fault zone conduits, or remains stored at depth awaiting a more appropriate stress field. <span>Dyking and volcanic activity occur within fault zones</span> <span>along the S</span><span>A</span><span>VZ, linked with stress field variations</span> <span>in spatial and temporal association with</span> –<span>short therm-</span> <span>seismicity</span> <span>and -long term- oblique </span><span>plate </span><span>convergence.</span> <span>Volcanoes and geothermal domains are mostly located along or at the intersection of margin-oblique fault zones (Andean Transverse Faults), and along margin-parallel strike slip zones, some which may cut the entire lithosphere (Liquiñe-Ofqui fault system). Wh</span><span>ereas</span><span> the big picture displays</span> <span>fluid flow straight to the surface, at close look significant offsets between crustal structures occur. 3D numerical models using conventional elasto-plastic rheology provide insights on the interaction of (i) an inflating magmatic cavity, (ii) a slipping fault zone, and (iii) regional tectonic stresses. Applying either (i) a magmatic overpressure or (ii) a given fault slip can trigger failure of the intervening rock, and generate either i) fault motion or ii) magmatic reservoir failure, respectively, but only for distances less than the structures' breadth even at low rock</span> <span>strength. However, at greater inter-distances the bedrock domain in between the fault zone and the magmatic cavity undergoes dilatational strain of the order of 1-5x10-5. This dilation opens the bedrock’s pore space and forms «pocket domains» that may store up-flowing over-pressurized fluids, which may then further chemically</span> interact<span> with the bedrock, for the length of time</span> <span>that</span> <span>these pockets remain open. These porous pockets</span> <span>can reach kilometric size, questioning their parental link with outcropping plutons along the margin. Moreover, bedrock permeability may also increase as fluid flow diminishes effective bedrock friction and cohesion. Comparison with rock experiments indicates that such stress and fluid pressure changes may eventually trigger failure at the intermediate timescale (repeated slip or repeated inflation). Finally, incorporating far field compression (iii)</span> <span>loads the bedrock to</span> <span>a state of stress at the verge of failure. Then, failure around the magmatic </span><span>reservoir</span><span> or </span><span>at</span> <span>the fault zone occurs for lower load</span><span>ing</span><span>.</span> <span>Permanent tectonic loading on the one hand, far field episodic seismic inversion of the stress field on the other, and localized failure all together promote a transient stress field, thus explaining the occurrence of transient fluid pathways on seemingly independent timescales. These synthetic models are then discussed with regards to specific cases along the SVZ, particularly the Tatara-San Pedro area (~36°S), where magnetotelluric profiles </span><span>document</span><span> conductive volumes at different depths underneath active faults, volcanic edifices and geothermal vents. We discuss the mechanical link between these deep sources and surface structures</span>.</p>


2020 ◽  
Author(s):  
Hijrah Saputra ◽  
Wahyudi Wahyudi ◽  
Iman Suardi ◽  
Wiwit Suryanto

Abstract This research was examines the focal mechanism associated with the mainshock and three aftershocks of the magnitude 6.3 Yogyakarta earthquake on May 27, 2006. This study, therefore, aims to provide a cleareranswer on the source mechanism of the earthquake, which has been debated. Data were obtained from the mainshock and aftershock sources, on June 8, 9, and 16, 2006. The mainshock and three aftershocks were used to conduct waveform inversion by calculating the Green's functions through the extended reflectivity method of the near-field and the far-field signal component. The mainshock's focal mechanism has a strike, dip, and range angle of 243.40o, 77.50o, and -28.30o, respectively.Furthermore, the mainshock is not a pure strike-slip as previously hypothesized. The focal mechanism for the aftershock earthquake source on Mw 4.4, obtained on June 8, had a strike, dip, rake, and variance of 192.20o, 29.70o, -48.30o and 0.22, respectively. This aftershock had a different segment from the mainshock event and those obtained on the 9 and 16 of June with the same type of faulting as the mainshock with variance values of 0.195 and 0.243. These results showed that the mainshock of May 27, 2006, activated the aftershock on June 8, with a different type of fault.


Geosphere ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. 409-437 ◽  
Author(s):  
Anne Krabbenhoeft ◽  
Roland von Huene ◽  
John J. Miller ◽  
Dirk Klaeschen

Abstract In 1964, the Alaska margin ruptured in a giant Mw 9.2 megathrust earthquake, the second largest during worldwide instrumental recording. The coseismic slip and aftershock region offshore Kodiak Island was surveyed in 1977–1981 to understand the region’s tectonics. We re-processed multichannel seismic (MCS) field data using current standard Kirchhoff depth migration and/or MCS traveltime tomography. Additional surveys in 1994 added P-wave velocity structure from wide-angle seismic lines and multibeam bathymetry. Published regional gravity, backscatter, and earthquake compilations also became available at this time. Beneath the trench, rough oceanic crust is covered by ∼3–5-km-thick sediment. Sediment on the subducting plate modulates the plate interface relief. The imbricate thrust faults of the accreted prism have a complex P-wave velocity structure. Landward, an accelerated increase in P-wave velocities is marked by a backstop splay fault zone (BSFZ) that marks a transition from the prism to the higher rigidity rock beneath the middle and upper slope. Structures associated with this feature may indicate fluid flow. Farther upslope, another fault extends >100 km along strike across the middle slope. Erosion from subducting seamounts leaves embayments in the frontal prism. Plate interface roughness varies along the subduction zone. Beneath the lower and middle slope, 2.5D plate interface images show modest relief, whereas the oceanic basement image is rougher. The 1964 earthquake slip maximum coincides with the leading and/or landward flank of a subducting seamount and the BSFZ. The BSFZ is a potentially active structure and should be considered in tsunami hazard assessments.


Author(s):  
N. Bonnet ◽  
M. Troyon ◽  
P. Gallion

Two main problems in high resolution electron microscopy are first, the existence of gaps in the transfer function, and then the difficulty to find complex amplitude of the diffracted wawe from registered intensity. The solution of this second problem is in most cases only intended by the realization of several micrographs in different conditions (defocusing distance, illuminating angle, complementary objective apertures…) which can lead to severe problems of contamination or radiation damage for certain specimens.Fraunhofer holography can in principle solve both problems stated above (1,2). The microscope objective is strongly defocused (far-field region) so that the two diffracted beams do not interfere. The ideal transfer function after reconstruction is then unity and the twin image do not overlap on the reconstructed one.We show some applications of the method and results of preliminary tests.Possible application to the study of cavitiesSmall voids (or gas-filled bubbles) created by irradiation in crystalline materials can be observed near the Scherzer focus, but it is then difficult to extract other informations than the approximated size.


Sign in / Sign up

Export Citation Format

Share Document