Physical and Morphological Changes to Wetlands Induced by Coastal Structures

Author(s):  
Germán Daniel Rivillas-Ospina ◽  
Gabriel Ruiz-Martinez ◽  
Rodolfo Silva ◽  
Edgar Mendoza ◽  
Carlos Pacheco ◽  
...  
Author(s):  
Milad Bamdadi Nejad ◽  
◽  
Mohammad Javad Ketabdari ◽  
Farhad Shojaei ◽  
◽  
...  

Studying the sediments and predicting the coastal morphological changes have wide applications in coastal engineering, including coastal management, operation, and design of the structures as well as their maintenance, development, and expansion of coasts and coastal structures, which are of paramount importance. This study aims to model the shoreline changes around the Jazireh-e Shomali-Jonoubi Port, calculate the amount of advancement and recession due to the construction of the breakwater, and to determine the areas exposed to erosion and sedimentation. To this end, a series of primary information, including aerial and satellite images, hydrographic and topographic maps, and the specifications and grading of the sediment of the considered coast, has been collected and the overall morphology of the area has been determined. The input data into the model include a 12-year time series of the wave (height, period, and direction of the wave) and the wave climate. The length of the shoreline is 4 km and a profile perpendicular to the coast with a length of 1500 m has been applied to the model. Finally, using numerical modeling, the net and gross potential rates of annual and cumulative sediment transport, as well as shoreline changes after 12 years, were simulated. The effect and length of sedimentation behind the port’s breakwater after 1, 5, 10 and 12 years are 81, 190, 247 and 267 meters, respectively, which is in good agreement with the actual observations. Because the length of the breakwaters is 300 meters, the sedimentation problem has not yet been established for the port after 12 years.


2017 ◽  
Vol 10 (7) ◽  
pp. 2715-2740 ◽  
Author(s):  
Andrés Payo ◽  
David Favis-Mortlock ◽  
Mark Dickson ◽  
Jim W. Hall ◽  
Martin D. Hurst ◽  
...  

Abstract. The ability to model morphological changes on complex, multi-landform coasts over decadal to centennial timescales is essential for sustainable coastal management worldwide. One approach involves coupling of landform-specific simulation models (e.g. cliffs, beaches, dunes and estuaries) that have been independently developed. An alternative, novel approach explored in this paper is to capture the essential characteristics of the landform-specific models using a common spatial representation within an appropriate software framework. This avoid the problems that result from the model-coupling approach due to between-model differences in the conceptualizations of geometries, volumes and locations of sediment. In the proposed framework, the Coastal Modelling Environment (CoastalME), change in coastal morphology is represented by means of dynamically linked raster and geometrical objects. A grid of raster cells provides the data structure for representing quasi-3-D spatial heterogeneity and sediment conservation. Other geometrical objects (lines, areas and volumes) that are consistent with, and derived from, the raster structure represent a library of coastal elements (e.g. shoreline, beach profiles and estuary volumes) as required by different landform-specific models. As a proof-of-concept, we illustrate the capabilities of an initial version of CoastalME by integrating a cliff–beach model and two wave propagation approaches. We verify that CoastalME can reproduce behaviours of the component landform-specific models. Additionally, the integration of these component models within the CoastalME framework reveals behaviours that emerge from the interaction of landforms, which have not previously been captured, such as the influence of the regional bathymetry on the local alongshore sediment-transport gradient and the effect on coastal change on an undefended coastal segment and on sediment bypassing of coastal structures.


Author(s):  
Cheng-Hao Lu

Penghu islands, in the southern Taiwan Strait, is a remnant of a middle-late Miocene basaltic shield volcano. We present a procedure to use UAV (Unmanned Aerial Vehicles) to perform photogrammetry survey and monitoring analysis in beach evolution scenarios. The aim of this study is to understand spatial-temporal change along the sandy beach in Penghu islands, especially as for the effects of typhoon and coastal structures. According to the study result, this example of application is provided to show the results and the potential of this methodology in real beach changes. In addition, we found the typhoon and coastal structures play important roles to shape the beach morphology and its evolution. The result of beach monitoring reveals that the reduction and change of sand volume in Shanshui beach resulted from the placement of detached breakwater complexes. This coastal structure likely resulted in the development of tombolo and therefor make the beach unstable and subject to conduct rip current and more erosion.


2014 ◽  
Vol 56 (3) ◽  
pp. 1450016-1-1450016-21 ◽  
Author(s):  
Mohammad Bagus Adityawan ◽  
Nguyen Xuan Dao ◽  
Hitoshi Tanaka ◽  
Akira Mano ◽  
Keiko Udo

Author(s):  
Wei-Po Huang ◽  
Lien-Kwei Chien ◽  
Cheng-Yu Ku

This study evaluates the influence of coastal structures on coastal morphology near Hsin-Chu fishery harbor in the northwest of Taiwan. As a result, the downdrift side has undergone local erosion due to the longshore sediment was impounded at updrift breakwaters resulting the enhancement of coastal flood risks as well as deterioration of the biological environment. Process and trend analyses were used to assess the effects the coastal exploitation made on the coastal morphology. Environmentally-friendly remedial measure, beach nourishment is proposed. The sediment source supply and the location of beach nourishment were also suggested for achieving the goal of sustainable use in the area.


Author(s):  
Cheng-Hao Lu

Penghu islands, in the southern Taiwan Strait, is a remnant of a middle-late Miocene basaltic shield volcano. We present a procedure to use UAV (Unmanned Aerial Vehicles) to perform photogrammetry survey and monitoring analysis in beach evolution scenarios. The aim of this study is to understand spatial-temporal change along the sandy beach in Penghu islands, especially as for the effects of typhoon and coastal structures. According to the study result, this example of application is provided to show the results and the potential of this methodology in real beach changes. In addition, we found the typhoon and coastal structures play important roles to shape the beach morphology and its evolution. The result of beach monitoring reveals that the reduction and change of sand volume in Shanshui beach resulted from the placement of detached breakwater complexes. This coastal structure likely resulted in the development of tombolo and therefor make the beach unstable and subject to conduct rip current and more erosion.


Author(s):  
P. Bagavandoss ◽  
JoAnne S. Richards ◽  
A. Rees Midgley

During follicular development in the mammalian ovary, several functional changes occur in the granulosa cells in response to steroid hormones and gonadotropins (1,2). In particular, marked changes in the content of membrane-associated receptors for the gonadotropins have been observed (1).We report here scanning electron microscope observations of morphological changes that occur on the granulosa cell surface in response to the administration of estradiol, human follicle stimulating hormone (hFSH), and human chorionic gonadotropin (hCG).Immature female rats that were hypophysectcmized on day 24 of age were treated in the following manner. Group 1: control groups were injected once a day with 0.1 ml phosphate buffered saline (PBS) for 3 days; group 2: estradiol (1.5 mg/0.2 ml propylene glycol) once a day for 3 days; group 3: estradiol for 3 days followed by 2 days of hFSH (1 μg/0.1 ml) twice daily, group 4: same as in group 3; group 5: same as in group 3 with a final injection of hCG (5 IU/0.1 ml) on the fifth day.


Author(s):  
A.J. Mia ◽  
L.X. Oakford ◽  
T. Yorio

The amphibian urinary bladder has been used as a ‘model’ system for studies of the mechanism of action of antidiuretic hormone (ADH) in stimulating transepithelial water flow. The increase in water permeability is accompanied by morphological changes that include the stimulation of apical microvilli, mobilization of microtubules and microfilaments and vesicular membrane fusion events . It has been shown that alterations in the cytosolic calcium concentrations can inhibit ADH transmembrane water flow and induce alterations in the epithelial cell cytomorphology, including the cytoskeletal system . Recently, the subapical granules of the granular cell in the amphibian urinary bladder have been shown to contain high concentrations of calcium, and it was suggested that these cytoplasmic constituents may act as calcium storage sites for intracellular calcium homeostasis. The present study utilizes the calcium antagonist, verapamil, to examine the effect of calcium deprivation on the cytomorphological features of epithelial cells from amphibian urinary bladder, with particular emphasis on subapical granule and microfilament distribution.


Author(s):  
N. Kohyama ◽  
K. Fukushima ◽  
A. Fukami

Since the interlayer or adsorbed water of some clay minerals are quite easily dehydrated in dried air, in vacuum, or at moderate temperatures even in the atmosphere, the hydrated forms have not been observed by a conventional electron microscope(TEM). Recently, specific specimen chambers, “environmental cells(E.C.),” have been developed and confirmed to be effective for electron microscopic observation of wet specimen without dehydration. we observed hydrated forms of some clay minerals and their morphological changes by dehydration using a TEM equipped with an E.C..The E.C., equipped with a single hole copper-microgrid sealed by thin carbon-film, attaches to a TEM(JEM 7A) with an accelerating voltage 100KV and both gas pressure (from 760 Torr to vacuum) and relative humidity can be controlled. The samples collected from various localities in Japan were; tubular halloysite (l0Å) from Gumma Prefecture, sperical halloysite (l0Å) from Tochigi Pref., and intermediate halloysite containing both tubular and spherical types from Fukushima Pref..


Sign in / Sign up

Export Citation Format

Share Document