Comparative Analysis of Simulation and Real-World Energy Consumption for Battery-Life Estimation of Low-Power IoT (Internet of Things) Deployment in Varying Environmental Conditions Using Zolertia Z1 Motes

Author(s):  
Ashutosh Bandekar ◽  
Akshay Kotian ◽  
Ahmad Y. Javaid
2014 ◽  
Vol 606 ◽  
pp. 265-269 ◽  
Author(s):  
Seyed Mojib Zahraee ◽  
Milad Hatami ◽  
Ali Asghar Bavafa ◽  
Kambiz Ghafourian ◽  
Jafri Mohd Rohani

Today energy consumption is one of the controversial issues in the world. The rapid growing world energy consumption has already increased concern about the supply problems, heavy environmental effects such as global warming, climate change and etc. One of the most users of energy is residential buildings that consume the biggest share of energy. Growth in population, rising demand for buildings together causes to increase the upward trend in energy consumption. Therefore, energy efficiency in buildings plays a significant role to decrease the environmental effect. The goal of this paper is optimizing the main elements which are window, ceiling and wall by considering the effect of uncontrollable factors such as humidity , temperature and pressure in residential buildings using statistical method namely Taguchi method (JMP 11 software). A two-storey house in Malaysia was selected to simulate by means of BIM application. Based on the result, the optimum energy saving will be achieved when the type of material which are used for wall ,ceiling and window to be Brick Plaster , Acoustic Tile Suspended and Single Glazed Alum Frame respectively.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012080
Author(s):  
M. Srinivas ◽  
K.V. Daya Sagar

Abstract Currently, energy consumption in the digital circuit is a key design parameter for emerging mobile products. The principal cause of the power dissipation during idle mode is leakage currents, which are rising dramatically. Sub-threshold leakage is increased by the scaling of threshold voltage when gate current leakage increases because oxide thickness is scaled. With rising demands for mobile devices, leakage energy consumption has received even greater attention. Since a mobile device spends most of its time in standby mode, leakage power savings need to prolong the battery life. That is why low power has become a significant factor in CMOS circuit design. The required design and simulation of an AND gate with the BSIM4 MOS parameter model at 27 0C, supply voltage of 0,70V with CMOS technology of 65nm are the validation of the suitability of the proposed circuit technology. AND simulation. The performance parameters for the two AND input gate are compared with the current MTCMOS and SCCMOS techniques, such as sub-threshold leakage power dissipations in active and standby modes, the dynamic dissipation, and propagation period. The proposed hybrid super cutoff complete stack technique compared to the current MTCMOS technology shows a reduction in sub-threshold dissipation power dissipation by 3. 50x and 1.15x in standby modes and active modes respectively. The hybrid surface-cutting technique also shows savings of 2,50 and 1,04 in power dissipation at the sub-threshold in standby modes and active modes compared with the existing SCCMOS Technique.


2017 ◽  
Vol 2017 (4) ◽  
pp. 198-214 ◽  
Author(s):  
Niklas Buescher ◽  
Spyros Boukoros ◽  
Stefan Bauregger ◽  
Stefan Katzenbeisser

Abstract The widespread deployment of smart meters that frequently report energy consumption information, is a known threat to consumers’ privacy. Many promising privacy protection mechanisms based on secure aggregation schemes have been proposed. Even though these schemes are cryptographically secure, the energy provider has access to the plaintext aggregated power consumption. A privacy trade-off exists between the size of the aggregation scheme and the personal data that might be leaked, where smaller aggregation sizes leak more personal data. Recently, a UK industrial body has studied this privacy trade-off and identified that two smart meters forming an aggregate, are sufficient to achieve privacy. In this work, we challenge this study and investigate which aggregation sizes are sufficient to achieve privacy in the smart grid. Therefore, we propose a flexible, yet formal privacy metric using a cryptographic game based definition. Studying publicly-available, real world energy consumption datasets with various temporal resolutions, ranging from minutes to hourly intervals, we show that a typical household can be identified with very high probability. For example, we observe a 50% advantage over random guessing in identifying households for an aggregation size of 20 households with a 15-minutes reporting interval. Furthermore, our results indicate that single appliances can be identified with significant probability in aggregation sizes up to 10 households.


2013 ◽  
Vol 58 (1) ◽  
pp. 231-239 ◽  
Author(s):  
K. Hashimoto ◽  
N. Kumagai ◽  
K. Izumiya ◽  
H. Takano ◽  
P.R. Zabinski ◽  
...  

Extrapolation of world energy consumption from 1990 to 2010 indicates the complete exhaustion of world reserves of oil, natural gas, uranium and coal by 2040, 2043, 2046 and 2053, respectively. For the survival of all people in the whole world, intermittent and fluctuating electricity generated from renewable energy should be supplied in the form of usable fuel to all people in the whole world. We have been working on research and development of global carbon dioxide recycling for the use of renewable energy in the form of methane via electrolytic hydrogen generation using carbon dioxide as the feedstock. We created energy-saving cathodes for hydrogen production, anodes for oxygen evolution without chlorine formation in seawater electrolysis, and catalysts for methanation of carbon dioxide and built pilot plants of industrial scale. Recent advances in materials are described. Industrial applications are in progress.


Sign in / Sign up

Export Citation Format

Share Document