Wave Equation—Properties of Solutions—Starting Point of Hyperbolic Theory

Author(s):  
Marcelo R. Ebert ◽  
Michael Reissig
Keyword(s):  
2007 ◽  
Vol 60 (4) ◽  
pp. 149-171 ◽  
Author(s):  
L. M. B. C. Campos

The starting point in the formulation of most acoustic problems is the acoustic wave equation. Those most widely used, the classical and convected wave equations, have significant restrictions, i.e., apply only to linear, nondissipative sound waves in a steady homogeneous medium at rest or in uniform motion. There are many practical situations violating these severe restrictions. In the present paper 36 distinct forms of the acoustic wave equation are derived (and numbered W1–W36), extending the classical and convected wave equations to include cases of propagation in inhomogeneous and∕or unsteady media, either at rest or in potential or vortical flows. The cases considered include: (i) linear waves, i.e., with small gradients, which imply small amplitudes, and (ii) nonlinear waves, i.e., with steep gradients, which include “ripples” (large gradients with small amplitude) or large amplitude waves. Only nondissipative waves are considered, i.e., excluding and dissipation by shear and bulk viscosity and thermal conduction. Consideration is given to propagation in homogeneous media and inhomogeneous media, which are homentropic (i.e., have uniform entropy) or isentropic (i.e., entropy is conserved along streamlines), excluding nonisentropic (e.g., dissipative); unsteady media are also considered. The medium may be at rest, in uniform motion, or it may be a nonuniform and∕or unsteady mean flow, including: (i) potential mean flow, of low Mach number (i.e., incompressible mean state) or of high-speed (i.e., inhomogeneous compressible mean flow); (ii) quasi-one-dimensional propagation in ducts of varying cross section, including horns without mean flow and nozzles with low or high Mach number mean flow; or (iii) unidirectional sheared mean flow, in the plane, in space or axisymmetric. Other types of vortical mean flows, e.g., axisymmetric swirling mean flow, possibly combined with shear, are not considered in the present paper (and are left to follow-up work together with dissipative and other cases). The 36 wave equations are derived either by elimination among the general equations of fluid mechanics or from an acoustic variational principle, with both methods being used in a number of cases as cross-checks. Although the 36 forms of the acoustic wave equation do not cover all possible combinations of the three effects of (i) nonlinearity in (ii) inhomogeneous and unsteady and (iii) nonuniformly moving media, they do include each effect in isolation and a variety of combinations of multiple effects. Altogether they provide a useful variety of extensions of the classical (and convected) wave equations, which are used widely in the literature, in spite of being restricted to linear, nondissipative sound waves in an homogeneous steady medium at rest (or in uniform motion). There are many applications for which the classical and convected wave equations are poor approximations, and more general forms of the acoustic wave equation provide more satisfactory models. Numerous examples of these applications are given at the end of each written section. There are 240 references cited in this review article.


1980 ◽  
Vol 1 (17) ◽  
pp. 50
Author(s):  
Ove Skovgaard ◽  
Ivar G. Jonsson

The applicability of a time-stepping approximate finite difference method is tested for the response of a plane incoming tsunami of small amplitude meeting an idealized island (see Fig 1). The resulting amplitudes are compared with the exact solution, which comes out of solving the linear shallow water wave equation for the area in question. Since this wave equation excludes dissipation (bottom friction) and the Coriolis force, these terms are omitted in the Boussinesq equations, formulated as mass and momentum conservation, which are the bases of the finite difference scheme. Grid size is 1 x 1 km. The incoming wave is time-harmonic with a period of T = 480 s; the (test) solution to the wave equation is thus a truly steady-state solution. The finite difference scheme, however, has a so-called "cold start" and so it is transient in principle. During a time corresponding to three periods, in which disturbances from the open boundaries still have only a small effect on the wave field near the island, the time-series of signals in selected points can define a steady response, though. Considering the inevitable shortcomings of a provisional study like the present, satisfactory agreement with the exact solution is met over the shoal in Fig 1. We have thus a promising starting point for more elaborate studies, comprising new filtering algorithms for the boundaries, tests with real transient input signals, and including non-linearity, bottom friction, and the Coriolis force. The numerical scheme used is the so-called System 21, developed at the Danish Hydraulic Institute and placed at our disposal for the present study.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2086
Author(s):  
Arsen Pskhu ◽  
Sergo Rekhviashvili

We consider a diffusion–wave equation with fractional derivative with respect to the time variable, defined on infinite interval, and with the starting point at minus infinity. For this equation, we solve an asympotic boundary value problem without initial conditions, construct a representation of its solution, find out sufficient conditions providing solvability and solution uniqueness, and give some applications in fractional electrodynamics.


1973 ◽  
Vol 26 (5) ◽  
pp. 567
Author(s):  
Kwong-Chuen Tam

A quantum-mechanical wave equation for two particles of arbitrary spin is derived for any instantaneous interaction. The starting point is an integral equation which is a relativistic generalization of the SchrOdinger integral equation and is similar to the Bethe-Salpeter equation. The final two-particle wave equation contains the sum of the Hamiltonians of the two particles and has only one time variable. It reduces to the two-particle Schrodinger equation in the non-relativistic limit


Author(s):  
L.R. Wallenberg ◽  
J.-O. Bovin ◽  
G. Schmid

Metallic clusters are interesting from various points of view, e.g. as a mean of spreading expensive catalysts on a support, or following heterogeneous and homogeneous catalytic events. It is also possible to study nucleation and growth mechanisms for crystals with the cluster as known starting point.Gold-clusters containing 55 atoms were manufactured by reducing (C6H5)3PAuCl with B2H6 in benzene. The chemical composition was found to be Au9.2[P(C6H5)3]2Cl. Molecular-weight determination by means of an ultracentrifuge gave the formula Au55[P(C6H5)3]Cl6 A model was proposed from Mössbauer spectra by Schmid et al. with cubic close-packing of the 55 gold atoms in a cubeoctahedron as shown in Fig 1. The cluster is almost completely isolated from the surroundings by the twelve triphenylphosphane groups situated in each corner, and the chlorine atoms on the centre of the 3x3 square surfaces. This gives four groups of gold atoms, depending on the different types of surrounding.


2019 ◽  
Vol 476 (24) ◽  
pp. 3687-3704 ◽  
Author(s):  
Aphrodite T. Choumessi ◽  
Manuel Johanns ◽  
Claire Beaufay ◽  
Marie-France Herent ◽  
Vincent Stroobant ◽  
...  

Root extracts of a Cameroon medicinal plant, Dorstenia psilurus, were purified by screening for AMP-activated protein kinase (AMPK) activation in incubated mouse embryo fibroblasts (MEFs). Two isoprenylated flavones that activated AMPK were isolated. Compound 1 was identified as artelasticin by high-resolution electrospray ionization mass spectrometry and 2D-NMR while its structural isomer, compound 2, was isolated for the first time and differed only by the position of one double bond on one isoprenyl substituent. Treatment of MEFs with purified compound 1 or compound 2 led to rapid and robust AMPK activation at low micromolar concentrations and increased the intracellular AMP:ATP ratio. In oxygen consumption experiments on isolated rat liver mitochondria, compound 1 and compound 2 inhibited complex II of the electron transport chain and in freeze–thawed mitochondria succinate dehydrogenase was inhibited. In incubated rat skeletal muscles, both compounds activated AMPK and stimulated glucose uptake. Moreover, these effects were lost in muscles pre-incubated with AMPK inhibitor SBI-0206965, suggesting AMPK dependency. Incubation of mouse hepatocytes with compound 1 or compound 2 led to AMPK activation, but glucose production was decreased in hepatocytes from both wild-type and AMPKβ1−/− mice, suggesting that this effect was not AMPK-dependent. However, when administered intraperitoneally to high-fat diet-induced insulin-resistant mice, compound 1 and compound 2 had blood glucose-lowering effects. In addition, compound 1 and compound 2 reduced the viability of several human cancer cells in culture. The flavonoids we have identified could be a starting point for the development of new drugs to treat type 2 diabetes.


2020 ◽  
Vol 5 (5) ◽  
pp. 1175-1187
Author(s):  
Rachel Glade ◽  
Erin Taylor ◽  
Deborah S. Culbertson ◽  
Christin Ray

Purpose This clinical focus article provides an overview of clinical models currently being used for the provision of comprehensive aural rehabilitation (AR) for adults with cochlear implants (CIs) in the Unites States. Method Clinical AR models utilized by hearing health care providers from nine clinics across the United States were discussed with regard to interprofessional AR practice patterns in the adult CI population. The clinical models were presented in the context of existing knowledge and gaps in the literature. Future directions were proposed for optimizing the provision of AR for the adult CI patient population. Findings/Conclusions There is a general agreement that AR is an integral part of hearing health care for adults with CIs. While the provision of AR is feasible in different clinical practice settings, service delivery models are variable across hearing health care professionals and settings. AR may include interprofessional collaboration among surgeons, audiologists, and speech-language pathologists with varying roles based on the characteristics of a particular setting. Despite various existing barriers, the clinical practice patterns identified here provide a starting point toward a more standard approach to comprehensive AR for adults with CIs.


2006 ◽  
Vol 37 (3) ◽  
pp. 131-139 ◽  
Author(s):  
Juliane Degner ◽  
Dirk Wentura ◽  
Klaus Rothermund

Abstract: We review research on response-latency based (“implicit”) measures of attitudes by examining what hopes and intentions researchers have associated with their usage. We identified the hopes of (1) gaining better measures of interindividual differences in attitudes as compared to self-report measures (quality hope); (2) better predicting behavior, or predicting other behaviors, as compared to self-reports (incremental validity hope); (3) linking social-cognitive theories more adequately to empirical research (theory-link hope). We argue that the third hope should be the starting point for using these measures. Any attempt to improve these measures should include the search for a small-scale theory that adequately explains the basic effects found with such a measure. To date, small-scale theories for different measures are not equally well developed.


Sign in / Sign up

Export Citation Format

Share Document