PK/PD-Based Prediction of “Anti-Mutant” Antibiotic Exposures Using In Vitro Dynamic Models

Author(s):  
Alexander A. Firsov ◽  
Yury A. Portnoy ◽  
Stephen H. Zinner
Keyword(s):  
1999 ◽  
Vol 43 (3) ◽  
pp. 498-502 ◽  
Author(s):  
Alexander A. Firsov ◽  
Sergey N. Vostrov ◽  
Olga V. Kononenko ◽  
Stephen H. Zinner ◽  
Yury A. Portnoy

ABSTRACT The effect of inoculum size (N 0) on antimicrobial action has not been extensively studied in in vitro dynamic models. To investigate this effect and its predictability, killing and regrowth kinetics of Staphylococcus aureus andEscherichia coli exposed to monoexponentially decreasing concentrations of trovafloxacin (as a single dose) and ciprofloxacin (two doses at a 12-h interval) were compared atN 0 = 106 and 109 CFU/ml (S. aureus) and at N 0 = 106, 107, and 109 CFU/ml (E. coli). A series of pharmacokinetic profiles of trovafloxacin and ciprofloxacin with respective half-lives of 9.2 and 4 h were simulated at different ratios of area under the concentration-time curve (AUC) to MIC (in [micrograms × hours/milliliter]/[micrograms/milliliter]): 58 to 466 with trovafloxacin and 116 to 932 with ciprofloxacin for S. aureus and 58 to 233 and 116 to 466 for E. coli, respectively. Although the effect of N 0 was more pronounced for E. coli than for S. aureus, only a minor increase in minimum numbers of surviving bacteria and an almost negligible delay in their regrowth were associated with an increase of the N 0 for both organisms. TheN 0-induced reductions of the intensity of the antimicrobial effect (IE , area between control growth and the killing-regrowth curves) were also relatively small. However, the N 0 effect could not be eliminated either by simple shifting of the time-kill curves obtained at higherN 0s by the difference between the higher and lowest N 0 or by operating withIE s determined within theN 0-adopted upper limits of bacterial numbers (IE ′s). By using multivariate correlation and regression analyses, linear relationships betweenIE and log AUC/MIC and logN 0 related to the respective mean values [(log AUC/MIC)average and (logN 0)average] were established for both trovafloxacin and ciprofloxacin against each of the strains (r 2 = 0.97 to 0.99). The antimicrobial effect may be accurately predicted at a given AUC/MIC of trovafloxacin or ciprofloxacin and at a given N 0 based on the relationship IE = a + b [(log AUC/MIC)/(log AUC/MIC)average] − c [(logN 0)/(logN 0)average]. Moreover, the relative impacts of AUC/MIC and N 0 onIE may be evaluated. Since the c/bratios for trovafloxacin and ciprofloxacin against E. coliwere much lower (0.3 to 0.4) than that for ampicillin-sulbactam as examined previously (1.9), the inoculum effect with the quinolones may be much less pronounced than with the β-lactams. The described approach to the analysis of the inoculum effect in in vitro dynamic models might be useful in studies with other antibiotic classes.


1996 ◽  
Vol 40 (3) ◽  
pp. 734-738 ◽  
Author(s):  
A A Firsov ◽  
D Saverino ◽  
D Savarino ◽  
M Ruble ◽  
D Gilbert ◽  
...  

The clinical outcome in patients treated with ampicillin-sulbactam may not always be predictable by disc susceptibility testing or with the MIC as determined with a constant level (4 micrograms/ml) of the beta-lactamase inhibitor (MIC1). The enzyme activities (EA) and the MICs estimated at a constant ratio of ampicillin to sulbactam of 2:1 (MIC2) for 15 TEM-1 beta-lactamase-producing strains of Escherichia coli were examined as alternatives to MIC1 as predictors of the antibacterial effects of this combined drug as studied in an in vitro model which simulates ampicillin-sulbactam pharmacokinetic profiles observed in human peripheral tissues. Integral parameters describing the area under the bacterial count-time curve (AUBC), the area between the normal growth curve, and the killing curve of bacteria exposed to antibiotic (ABBC), and the second parameter expressed as a percentage of its maximal hypothetical value (ABBC/ABBCmax) were calculated. All three parameters correlated well with EA (AUBC, r = 0.93; ABBC, r = -0.88; ABBC/ABBCmax, r = -0.91) and with MIC2 (r = 0.94, -0.94, and -0.95, respectively) but not with MIC1. Both EA and MIC2 can be considered reliable predictors of the antibacterial effect of ampicillin-sulbactam in an in vitro model. These correlations suggest that in vitro kinetic-dynamic models might be useful to reexamine established susceptibility breakpoints obtained with data based on the MIC1 (MICs obtained with constant levels of beta-lactamase inhibitors). These data also suggest that quantitative determinations of bacterial beta-lactamase production and MICs based on the component concentration ratio observed in vivo might be useful predictors of the effect of ampicillin-sulbactam and other beta-lactam-inhibitor combinations.


2016 ◽  
Vol 61 (2) ◽  
Author(s):  
Seung-Jin Lee ◽  
Elias Gebru Awji ◽  
Na-hye Park ◽  
Seung-Chun Park

ABSTRACT The objectives of this study were to determine pharmacokinetic/pharmacodynamic (PK/PD) indices of fluoroquinolones that minimize the emergence of resistant Salmonella enterica serovar Typhimurium (S. Typhimurium) using in vitro dynamic models and to establish mechanisms of resistance. Three fluoroquinolones, difloxacin (DIF), enrofloxacin (ENR), and marbofloxacin (MAR), at five dose levels and 3 days of treatment were simulated. Bacterial killing-regrowth kinetics and emergence of resistant bacteria after antibacterial drug exposure were quantified. PK/PD indices associated with different levels of antibacterial activity were computed. Mechanisms of fluoroquinolone resistance were determined by analyzing target mutations in the quinolone resistance-determining regions (QRDRs) and by analyzing overexpression of efflux pumps. Maximum losses in susceptibility of fluoroquinolone-exposed S. Typhimurium occurred at a simulated AUC/MIC ratio (area under the concentration-time curve over 24 h in the steady state divided by the MIC) of 47 to 71. Target mutations in gyrA (S83F) and overexpression of acrAB-tolC contributed to decreased susceptibility in fluoroquinolone-exposed S. Typhimurium. The current data suggest AUC/MIC (AUC/mutant prevention concentration [MPC])-dependent selection of resistant mutants of S. Typhimurium, with AUC/MPC ratios of 69 (DIF), 62 (ENR), and 39 (MAR) being protective against selection of resistant mutants. These values could not be achieved in veterinary clinical areas under the current recommended therapeutic doses of the fluoroquinolones, suggesting the need to reassess the current dosing regimen to include both clinical efficacy and minimization of emergence of resistant bacteria.


2009 ◽  
Vol 64 (4) ◽  
pp. 815-820 ◽  
Author(s):  
M. V. Smirnova ◽  
S. N. Vostrov ◽  
E. V. Strukova ◽  
S. A. Dovzhenko ◽  
M. B. Kobrin ◽  
...  

2021 ◽  
Author(s):  
Dipankar Bhattacharya ◽  
Ryman Hashem ◽  
Leo Cheng ◽  
Peter Xu

<p>Strictures caused by esophageal cancer can narrow down the esophageal lumen, leading to dysphagia. Palliation of dysphagia has driven the development of a Robotic Soft Esophagus (RoSE) to provide a novel in vitro platform for esophageal stent testing and food viscosity studies. In RoSE, peristaltic wave generation and control were done in an open-loop manner since the conduit lacked visibility and embedded sensing capability. Hence, in this work, RoSE version 2.0 (RoSEv2.0) was designed with embedded Time Of Flight (TOF) and pressure sensors to measure conduit displacement and air pressure, respectively, for modeling and control. Model Predictive Control (MPC) of RoSEv2.0 was implemented to govern the peristalsis and air pressure profile autonomously. The implemented MPC used Sparse Identification Nonlinear Dynamics with Control (SINDYC) models to estimate the future states of ROSEv2.0. The dynamic models were discovered from the TOF and pressure sensors captured data. Peristalsis waves of speed 20 mm/s, wavelength 75 mm, and amplitudes 5, 7.5, and 10 mm were successfully generated by the MPC. Additionally, RoSEv2.0 with the MPC was employed to perform stent migration testing with various food boluses consistencies.</p>


1998 ◽  
Vol 42 (11) ◽  
pp. 2841-2847 ◽  
Author(s):  
Alexander A. Firsov ◽  
Sergey N. Vostrov ◽  
Alexander A. Shevchenko ◽  
Yury A. Portnoy ◽  
Stephen H. Zinner

ABSTRACT Time-kill studies, even those performed with in vitro dynamic models, often do not provide definitive comparisons of different antimicrobial agents. Also, they do not allow determinations of equiefficient doses or predictions of area under the concentration-time curve (AUC)/MIC breakpoints that might be related to antimicrobial effects (AMEs). In the present study, a wide range of single doses of trovafloxacin (TR) and twice-daily doses of ciprofloxacin (CI) were mimicked in an in vitro dynamic model. The AMEs of TR and CI against gram-negative bacteria with similar susceptibilities to both drugs were related to AUC/MICs that varied over similar eight-fold ranges [from 54 to 432 and from 59 to 473 (μg · h/ml)/(μg/ml), respectively]. The observation periods were designed to include complete bacterial regrowth, and the AME was expressed by its intensity (the area between the control growth in the absence of antibiotics and the antibiotic-induced time-kill and regrowth curves up to the point where viable counts of regrowing bacteria equal those achieved in the absence of drug [I E]). In each experiment monoexponential pharmacokinetic profiles of TR and CI were simulated with half-lives of 9.2 and 4.0 h, respectively. Linear relationships between I E and log AUC/MIC were established for TR and CI against three bacteria: Escherichia coli (MIC of TR [MICTR] = 0.25 μg/ml; MIC of CI [MICCI] = 0.12 μg/ml), Pseudomonas aeruginosa (MICTR = 0.3 μg/ml; MICCI = 0.15 μg/ml), and Klebsiella pneumoniae(MICTR = 0.25 μg/ml; MICCI = 0.12 μg/ml). The slopes and intercepts of these relationships differed for TR and CI, and the I E-log AUC/MIC plots were not superimposed, although they were similar for all bacteria with a given antibiotic. By using the relationships betweenI E and log AUC/MIC, TR was more efficient than CI. The predicted value of the AUC/MIC breakpoint for TR [mean for all three bacteria, 63 (μg · h/ml)/(μg/ml)] was approximately twofold lower than that for CI. Based on theI E-log AUC/MIC relationships, the respective dose (D)-response relationships were reconstructed. Like the I E-log AUC/MIC relationships, theI E-log D plots showed TR to be more efficient than CI. Single doses of TR that are as efficient as two 500-mg doses of CI (500 mg given every 12 h) were similar for the three strains (199, 226, and 203 mg). This study suggests that in vitro evaluation of the relationships between I E and AUC/MIC or D might be a reliable basis for comparing different fluoroquinolones and that the results of such comparative studies may be highly dependent on their experimental design and datum quantitation.


Author(s):  
Lian J. Pennings ◽  
Mike Marvin Ruth ◽  
Heiman F.L. Wertheim ◽  
Jakko van Ingen

Nontuberculous mycobacterial pulmonary disease (NTM-PD) is emerging worldwide. Currently recommended multidrug treatment regimens yield poor outcomes and new drugs and regimens are direly needed. SPR719, the active moiety of SPR720 is a new benzimidazole antibiotic with limited data on antimycobacterial activity. We determined MICs and MBCs against 138 clinical and reference strains of M. avium complex (MAC), M. kansasii, M. abscessus, M. xenopi, M. malmoense and M. simiae and determined synergy with antimycobacterial drugs by checkerboard titrations. To study pharmacodynamics, we performed time-kill kinetics assays of SPR719 alone and in combinations against M. avium, M. kansasii and M. abscessus and assessed synergy by response surface analysis according to BLISS independence. SPR719 showed potent activity against MAC (MIC90 2 mg/L), M. kansasii (MIC90 0.125 mg/L) and modest activity against M. abscessus (MIC90 8 mg/L); its activity is bacteriostatic and concentration-dependent. We recorded potential for combination therapy with ethambutol against M. kansasii and M. avium and synergy with clarithromycin against M. abscessus. Ethambutol increased the SPR719 kill rate against M. kansasii but only prevented SPR719 resistance in M. avium. SPR719 is active in vitro against NTM; its activity is strongest against M. kansasii, followed by MAC and M. abscessus. SPR719 shows promise for combination therapy with ethambutol against MAC and M. kansasii and synergy with clarithromycin against M. abscessus. The parent drug SPR720 could have a role especially in MAC pulmonary disease treatment. Further studies in dynamic models and trials are ongoing to advance clinical development.


Author(s):  
Stephen H Zinner ◽  
Kamilla N Alieva ◽  
Maria V Golikova ◽  
Elena N Strukova ◽  
Yury A Portnoy ◽  
...  

Abstract Objectives To explore whether linezolid/daptomycin combinations can restrict Staphylococcus aureus resistance and if this restriction is associated with changes in the mutant prevention concentrations (MPCs) of the antibiotics in combination, the enrichment of resistant mutants was studied in an in vitro dynamic model. Methods Two MRSA strains, vancomycin-intermediate resistant ATCC 700699 and vancomycin-susceptible 2061 (both susceptible to linezolid and daptomycin), and their linezolid-resistant mutants selected by passaging on antibiotic-containing medium were used in the study. MPCs of antibiotics in combination were determined at a linezolid-to-daptomycin concentration ratio (1:2) that corresponds to the ratio of 24 h AUCs (AUC24s) actually used in the pharmacokinetic simulations. Each S. aureus strain was supplemented with respective linezolid-resistant mutants (mutation frequency 10−8) and treated with twice-daily linezolid and once-daily daptomycin, alone and in combination, simulated at therapeutic and sub-therapeutic AUC24s. Results Numbers of linezolid-resistant mutants increased at therapeutic and sub-therapeutic AUC24s, whereas daptomycin-resistant mutants were enriched only at sub-therapeutic AUC24 in single drug treatments. Linezolid/daptomycin combinations prevented the enrichment of linezolid-resistant S. aureus and restricted the enrichment of daptomycin-resistant mutants. The pronounced anti-mutant effects of the combinations were attributed to lengthening the time above MPC of both linezolid and daptomycin as their MPCs were lowered. Conclusions The present study suggests that (i) the inhibition of S. aureus resistant mutants using linezolid/daptomycin combinations can be predicted by MPCs determined at pharmacokinetically derived antibiotic concentration ratios and (ii) T&gt;MPC is a reliable predictor of the anti-mutant efficacy of antibiotic combinations as studied using in vitro dynamic models.


Sign in / Sign up

Export Citation Format

Share Document