scholarly journals A State of the Art on Railway Simulation Modelling Software Packages and Their Application to Designing Baggage Transfer Services

Author(s):  
Ho Ki Yeung ◽  
Marin Marinov
1977 ◽  
Vol 11 (3) ◽  
pp. 1-117 ◽  
Author(s):  
Compuater Graphics staff

2019 ◽  
Vol 278 (3) ◽  
pp. 721-737 ◽  
Author(s):  
Sally C. Brailsford ◽  
Tillal Eldabi ◽  
Martin Kunc ◽  
Navonil Mustafee ◽  
Andres F. Osorio

1996 ◽  
Vol 3 (29) ◽  
Author(s):  
Lars Arge

Ordered Binary-Decision Diagrams (OBDD) are the state-of-the art<br />data structure for boolean function manipulation and there exist<br />several software packages for OBDD manipulation. OBDDs have<br />been successfully used to solve problems in e.g. digital-systems design, verification and testing, in mathematical logic, concurrent system design and in artificial intelligence. The OBDDs used in many of these applications quickly get larger than the available main memory and it becomes essential to consider the problem of minimizing the Input/Output (I/O) communication. In this paper we analyze why existing OBDD manipulation algorithms perform poorly in an I/O environment and develop new I/O-efficient algorithms.


2021 ◽  
Vol 17 (8) ◽  
pp. e1009351
Author(s):  
Shenghao Yang ◽  
Priyabrata Senapati ◽  
Di Wang ◽  
Chris T. Bauch ◽  
Kimon Fountoulakis

Decision-making about pandemic mitigation often relies upon simulation modelling. Models of disease transmission through networks of contacts–between individuals or between population centres–are increasingly used for these purposes. Real-world contact networks are rich in structural features that influence infection transmission, such as tightly-knit local communities that are weakly connected to one another. In this paper, we propose a new flow-based edge-betweenness centrality method for detecting bottleneck edges that connect nodes in contact networks. In particular, we utilize convex optimization formulations based on the idea of diffusion with p-norm network flow. Using simulation models of COVID-19 transmission through real network data at both individual and county levels, we demonstrate that targeting bottleneck edges identified by the proposed method reduces the number of infected cases by up to 10% more than state-of-the-art edge-betweenness methods. Furthermore, the proposed method is orders of magnitude faster than existing methods.


Author(s):  
Loı̈c M. Roch ◽  
Florian Häse ◽  
Christoph Kreisbeck ◽  
Teresa Tamayo-Mendoza ◽  
Lars P. E. Yunker ◽  
...  

<div>Autonomous or “self-driving” laboratories combine robotic platforms with artificial intelligence to increase the rate of scientific discovery. They have the potential to transform our traditional approaches to experimentation. Although autonomous laboratories recently gained increased attention, the requirements imposed by engineering the software packages often prevent their development. Indeed, autonomous laboratories require considerable effort in designing and writing advanced and robust software packages to control, orchestrate and synchronize automated instrumentations, cope with databases, and interact with various artificial intelligence algorithms. To overcome this limitation, we introduce ChemOS, a portable, modular and versatile software package, which supplies the structured layers indispensable for operating autonomous laboratories. Additionally, it enables remote control of laboratories, provides access to distributed computing resources, and comprises state-of-the-art machine learning methods. We believe that ChemOS will reduce the time-to-deployment from automated to autonomous discovery, and will provide the scientific community with an easy-to-use package to facilitate novel discovery, at a faster pace.</div>


Author(s):  
Dazhong Wu ◽  
Janis Terpenny ◽  
Dirk Schaefer

AbstractThis paper (Wu 2016), which was published in AI EDAM online on August 22, 2016, has been retracted by Cambridge University Press as it is very similar in content to a published ASME Conference Proceedings paper. The article in question and the ASME Conference Proceedings paper were submitted for review with AI EDAM and the ASME at similar times, but copyright was assigned to ASME before the paper was accepted in AI EDAM and therefore the article in AI EDAM is being retracted. (In recent years, industrial nations around the globe have invested heavily in new technologies, software, and services to advance digital design and manufacturing using cyber-physical systems, data analytics, and high-performance computing. Many of these initiatives, such as cloud-based design and manufacturing, fall under the umbrella of what has become known as Industry 4.0 or Industrial Internet and are often hailed as pillars of a new industrial revolution. While an increasing number of companies are developing or already offer commercial cloud-based software packages and services for digital design and manufacturing, little work has been reported on providing a review of the state of the art of these commercial software and services as well as identifying research gaps in this field. The objective of this paper is to present a state-of-the-art review of digital design and manufacturing software and services that are currently available on the cloud. The focus of this paper is on assessing to what extent engineering design, engineering analysis, manufacturing, and production across all phases of the product development lifecycles can already be performed based on the software and services accessed through the cloud. In addition, the key capabilities and benefits of these software packages and services are discussed. Based on the assessment of the core features of commercial software and services, it can be concluded that almost all phases of product realization can be conducted through digital design and manufacturing software and services on the cloud. Finally, existing research gaps and related challenges to overcome are identified. The state-of-the-art review serves to provide a technology guide for decision makers in their efforts to select suitable cloud-based software and services as alternatives to existing in-house resources as well as to recommend new research areas.)


2010 ◽  
Vol 426-427 ◽  
pp. 559-563 ◽  
Author(s):  
Song Lin Ding ◽  
John Mo ◽  
D. Yang

Over one hundred types of commercial CAD/CAM systems are currently used in various industries. To meet the increasing demand for high speed machining (HSM) from shop floors most of these systems have integrated functions for the generation of HSM tool path. However, the strategies they adopted and the qualities of HSM tool path generated by these packages differ significantly from system to system. This paper reviews the state-of-the-art HSM strategies adopted by industrial CAD/CAM systems. The review is based on sixteen widely used software packages which include both advanced systems and the relatively concise packages. HSM features of each system are summarized; HSM strategies adopted by those systems are presented; the advantages and disadvantages are discussed as well.


Author(s):  
Robert Niederheiser ◽  
Martin Mokroš ◽  
Julia Lange ◽  
Helene Petschko ◽  
Günther Prasicek ◽  
...  

Terrestrial photogrammetry nowadays offers a reasonably cheap, intuitive and effective approach to 3D-modelling. However, the important choice, which sensor and which software to use is not straight forward and needs consideration as the choice will have effects on the resulting 3D point cloud and its derivatives. <br><br> We compare five different sensors as well as four different state-of-the-art software packages for a single application, the modelling of a vegetated rock face. The five sensors represent different resolutions, sensor sizes and price segments of the cameras. The software packages used are: (1) Agisoft PhotoScan Pro (1.16), (2) Pix4D (2.0.89), (3) a combination of Visual SFM (V0.5.22) and SURE (1.2.0.286), and (4) MicMac (1.0). We took photos of a vegetated rock face from identical positions with all sensors. Then we compared the results of the different software packages regarding the ease of the workflow, visual appeal, similarity and quality of the point cloud. <br><br> While PhotoScan and Pix4D offer the user-friendliest workflows, they are also “black-box” programmes giving only little insight into their processing. Unsatisfying results may only be changed by modifying settings within a module. The combined workflow of Visual SFM, SURE and CloudCompare is just as simple but requires more user interaction. MicMac turned out to be the most challenging software as it is less user-friendly. However, MicMac offers the most possibilities to influence the processing workflow. The resulting point-clouds of PhotoScan and MicMac are the most appealing.


Sign in / Sign up

Export Citation Format

Share Document