scholarly journals Use of the Hydro-Salinity, Crop Production Optimization Model APSIDE to Validate Results from an Updated Regional Flow Model of the San Joaquin River Basin

Author(s):  
Nigel W. T. Quinn ◽  
John Cronin
2011 ◽  
Vol 8 (1) ◽  
pp. 763-809 ◽  
Author(s):  
M. M. Mekonnen ◽  
A. Y. Hoekstra

Abstract. This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996–2005. The assessment is global and improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc min grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the water footprint network. Considering the water footprints of primary crops, we see that global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton−1), vegetables (300 m3 ton−1), roots and tubers (400 m3 ton−1), fruits (1000 m3 ton−1), cereals} (1600 m3 ton−1), oil crops (2400 m3 ton−1) to pulses (4000 m3 ton−1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ−1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51 m3 GJ−1, while this is 121 m3 GJ−1 for maize. The global water footprint related to crop production in the period 1996–2005 was 7404 billion cubic meters per year (78% green, 12% blue, 10% grey). A large total water footprint was calculated for wheat (1087 Gm3 yr−1), rice (992 Gm3 yr−1) and maize (770 Gm3 yr−1). Wheat and rice have the largest blue water footprints, together accounting for 45% of the global blue water footprint. At country level, the total water footprint was largest for India (1047 Gm3 yr−1), China (967 Gm3 yr−1) and the USA (826 Gm3 yr−1). A relatively large total blue water footprint as a result of crop production is observed in the Indus River Basin (117 Gm3 yr−1) and the Ganges River Basin (108 Gm3 yr−1). The two basins together account for 25% of the blue water footprint related to global crop production. Globally, rain-fed agriculture has a water footprint of 5173 Gm3 yr−1 (91% green, 9% grey); irrigated agriculture has a water footprint of 2230 Gm3 yr−1 (48% green, 40% blue, 12% grey).


2019 ◽  
Vol 4 (6) ◽  
pp. 34-40
Author(s):  
Bukar Abba Gana ◽  
Isah Funtua Abdulkadir ◽  
Hassan Musa ◽  
Tijjani Garba

River Basin Development Authorities (RBDAs) in Nigeria were established since 1976 and they operate mechanized and capital intensive programmes. All the 12 RBDAs operate as separate Authorities, each with separate administrative and operational autonomy, but sharing the Basin Resources of the 8 Hydrological Areas. However, their performance was generally described as disappointing. This study first reviewed the existing organization of the 12 RBDAs in Nigeria. Thereafter, one of the 8 Hydrological Areas – the Komadugu-Yobe Basin (KYB) – which is the major inland drainage system in Nigeria was purposely selected for detailed study.  Information on its major streams, tributaries and the main river; the hydrological area as well as the RBDAs sharing resources of the basin area, was gathered using ArcGIS version 10.0 and Erdas Imagine 9.2 software, as well as topographical and hydrological maps. This was processed and analyzed based on the principles of Stream Ordering and Logical Framework Analysis. The findings revealed that in establishing the RBDAs, basin-wide consideration of their sphere of operation was not taken into account. Dams were constructed before establishing the RBDAs. Runoff waters and spill ways were poorly controlled leading to flooding during rainy season and reduced water supply downstream during dry season, with serious environmental and socio-economic problems in the basin area. It was concluded that the RBDAs in Nigeria were poorly organized and have consequently failed to accelerate agricultural and rural development, and have also failed to boost food and industrial crop production as expected. The need was established for effective organization of River Basin Development and Management to improve their performance. To achieve this, a Conceptual framework for Integrated River Basin Development and Management was developed for adoption by river basin managers and other relevant stakeholders in Nigeria and around the globe to improve performance.


2021 ◽  
Author(s):  
Adria Rubio-Martin ◽  
Hector Macian-Sorribes ◽  
Esther Lopez-Perez ◽  
Alberto Garcia-Prats ◽  
Juan Manzano-Juarez ◽  
...  

<p>The Requena-Utiel aquifer in the Jucar River Basin (Mediterranean Spain) is mined mainly for the irrigation of vineyards (Denominación de Origen Utiel-Requena), and some olive and nut trees. It has been recently declared as in bad quantitative status by the Jucar River Basin Agency (Confederación Hidrográfica del Júcar, CHJ). Among the measures taken to control water abstraction, a pumping cap for the irrigation season (May-September) has been agreed between the CHJ and the groundwater user association. This limit depends on the cumulative precipitation from December to April (classifying the year in wet, normal or dry), although that irrigation amount is in any case below the crop requirements. Consequently, predicting the type of year beforehand is a piece of valuable information for the water users in order to optimally schedule groundwater pumping and foresee crop production.</p><p>This study analyses the ability of seasonal meteorological forecasts from the Copernicus Climate Change Service (C3S) to anticipate the type of year in the agricultural areas of the Requena Utiel aquifer considering different periods ahead. The following seasonal forecasting services were used: ECMWF SEAS5, UKMO GloSEA5, MétéoFrance System, DWD GCFS, and CMCC SPS. Seasonal forecasts issued between November 1<sup>st</sup> and April 1<sup>st</sup> were downloaded and post-processed using a month-dependent linear scaling against historical records. Once post-processed, the skill of seasonal forecasts to predict the type of year has been evaluated for the 1995-2015 period, depending on the anticipation time.</p><p>Results show that, on a broader view, the type of year cannot be safely anticipated before April 1<sup>st</sup>. However, we have identified that, for particular types of year and forecasting services, the anticipation time can be enlarged (e.g predicting wet years in December). Furthermore, we have found a direct relationship between the strength of the signal (number of ensemble members that predict the same type of year) and the forecasting skill, meaning that seasonal forecasts showing a strong signal, if properly identified, could offer valuable information months in advance to the beginning of the irrigation season.</p><p><em>Acknowledgements:</em></p><p>This study has received funding from the eGROUNDWATER project (GA n. 1921), part of the PRIMA programme supported by the European Union’s Horizon 2020 research and innovation programme. It has been also supported by the ADAPTAMED project (RTI2018-101483-B-I00), funded by the Ministerio de Economia y Competitividad (MINECO) of Spain and with EU FEDER funds.</p>


2020 ◽  
Vol 12 (11) ◽  
pp. 4733
Author(s):  
Nigel W. T. Quinn

This paper provides a chronology and overview of events and policy initiatives aimed at addressing irrigation sustainability issues in the San Joaquin River Basin (SJRB) of California. Although the SJRB was selected in this case study, many of the same resource management issues are being played out in arid, agricultural regions around the world. The first part of this paper provides an introduction to some of the early issues impacting the expansion of irrigated agriculture primarily on the west side of the San Joaquin Valley and the policy and capital investments that were used to address salinity impairments to the use of the San Joaquin River (SJR) as an irrigation water supply. Irrigated agriculture requires large quantities of water if it is to be sustained, as well as supply water of adequate quality for the crop being grown. The second part of the paper addresses these supply issues and a period of excessive groundwater pumping that resulted in widespread land subsidence. A joint federal and state policy response that resulted in the facilities to import Delta water provided a remedy that lasted almost 50 years until the Sustainable Groundwater Management Act of 2014 was passed in the legislature to address a recurrence of the same issue. The paper describes the current state of basin-scale simulation modeling that many areas, including California, are using to craft a future sustainable groundwater resource management policy. The third section of the paper deals with unique water quality issues that arose in connection with the selenium crisis at Kesterson Reservoir and the significant threats to irrigation sustainability on the west side of the San Joaquin Valley that followed. The eventual policy response to this crisis was incremental, spanning two decades of University of California-led research programs focused on finding permanent solutions to the salt and selenium contamination problems constraining irrigated agriculture, primarily on the west side. Arid-zone agricultural drainage-induced water quality problems are becoming more ubiquitous worldwide. One policy approach that found traction in California is an innovative variant on the traditional Total Maximum Daily Load (TMDL) approach to salinity regulation, which has features in common with a scheme in Australia’s Hunter River Basin. The paper describes the real-time salinity management (RTSM) concept, which is geared to improving coordination of west side agricultural and wetland exports of salt load with east side tributary reservoir release flows to improve compliance with river salinity objectives. RTSM is a concept that requires access to continuous flow and electrical conductivity data from sensor networks located along the San Joaquin River and its major tributaries and a simulation model-based decision support designed to make salt load assimilative capacity forecasts. Web-based information dissemination and data sharing innovations are described with an emphasis on experience with stakeholder engagement and participation. The last decade has seen wide-scale, global deployment of similar technologies for enhancing irrigation agriculture productivity and protecting environmental resources.


2004 ◽  
Vol 62 (1-3) ◽  
pp. 257-281 ◽  
Author(s):  
Nathan T. VanRheenen ◽  
Andrew W. Wood ◽  
Richard N. Palmer ◽  
Dennis P. Lettenmaier

Sign in / Sign up

Export Citation Format

Share Document