Optimization of an Image-Based Experimental Setup for the Dynamic Behaviour Characterization of Materials

Author(s):  
Pascal Bouda ◽  
Delphine Notta-Cuvier ◽  
Bertrand Langrand ◽  
Eric Markiewicz ◽  
Fabrice Pierron
Author(s):  
Davide Micheli ◽  
Roberto Pastore ◽  
Antonio Vricella ◽  
Andrea Delfini ◽  
Mario Marchetti ◽  
...  

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 519
Author(s):  
Nicolae Cretu ◽  
Mihail-Ioan Pop ◽  
Hank Steve Andia Prado

The work approaches new theoretical and experimental studies in the elastic characterization of materials, based on the properties of the intrinsic transfer matrix. The term ‘intrinsic transfer matrix’ was firstly introduced by us in order to characterize the system in standing wave case, when the stationary wave is confined inside the sample. An important property of the intrinsic transfer matrix is that at resonance, and in absence of attenuation, the eigenvalues are real. This property underlies a numerical method which permits to find the phase velocity for the longitudinal wave in a sample. This modal approach is a numerical method which takes into account the eigenvalues, which are analytically estimated for simple elastic systems. Such elastic systems are characterized by a simple distribution of eigenmodes, which may be easily highlighted by experiment. The paper generalizes the intrinsic transfer matrix method by including the attenuation and a study of the influence of inhomogeneity. The condition for real eigenvalues in that case shows that the frequencies of eigenmodes are not affected by attenuation. For the influence of inhomogeneity, we consider a case when the sound speed is varying along the layer’s length in the medium of interest, with an accompanying dispersion. The paper also studies the accuracy of the method in estimating the wave velocity and determines an optimal experimental setup in order to reduce the influence of frequency errors.


Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


Author(s):  
R.T. Blackham ◽  
J.J. Haugh ◽  
C.W. Hughes ◽  
M.G. Burke

Essential to the characterization of materials using analytical electron microscopy (AEM) techniques is the specimen itself. Without suitable samples, detailed microstructural analysis is not possible. Ultramicrotomy, or diamond knife sectioning, is a well-known mechanical specimen preparation technique which has been gaining attention in the materials science area. Malis and co-workers and Glanvill have demonstrated the usefulness and applicability of this technique to the study of a wide variety of materials including Al alloys, composites, and semiconductors. Ultramicrotomed specimens have uniform thickness with relatively large electron-transparent areas which are suitable for AEM anaysis.Interface Analysis in Type 316 Austenitic Stainless Steel: STEM-EDS microanalysis of grain boundaries in austenitic stainless steels provides important information concerning the development of Cr-depleted zones which accompany M23C6 precipitation, and documentation of radiation induced segregation (RIS). Conventional methods of TEM sample preparation are suitable for the evaluation of thermally induced segregation, but neutron irradiated samples present a variety of problems in both the preparation and in the AEM analysis, in addition to the handling hazard.


PIERS Online ◽  
2005 ◽  
Vol 1 (2) ◽  
pp. 128-132 ◽  
Author(s):  
Habiba Hafdallah Ouslimani ◽  
Redha Abdeddaim ◽  
Alain Priou

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhifang Chai ◽  
Amares Chatt ◽  
Peter Bode ◽  
Jan Kučera ◽  
Robert Greenberg ◽  
...  

AbstractThese recommendations are a vocabulary of basic radioanalytical terms which are relevant to radioanalysis, nuclear analysis and related techniques. Radioanalytical methods consider all nuclear-related techniques for the characterization of materials where ‘characterization’ refers to compositional (in terms of the identity and quantity of specified elements, nuclides, and their chemical species) and structural (in terms of location, dislocation, etc. of specified elements, nuclides, and their species) analyses, involving nuclear processes (nuclear reactions, nuclear radiations, etc.), nuclear techniques (reactors, accelerators, radiation detectors, etc.), and nuclear effects (hyperfine interactions, etc.). In the present compilation, basic radioanalytical terms are included which are relevant to radioanalysis, nuclear analysis and related techniques.


Sign in / Sign up

Export Citation Format

Share Document