Characterization of Materials for Retort Processing in Oyster Porridge

2002 ◽  
Vol 31 (5) ◽  
pp. 770-774 ◽  
Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


Author(s):  
R.T. Blackham ◽  
J.J. Haugh ◽  
C.W. Hughes ◽  
M.G. Burke

Essential to the characterization of materials using analytical electron microscopy (AEM) techniques is the specimen itself. Without suitable samples, detailed microstructural analysis is not possible. Ultramicrotomy, or diamond knife sectioning, is a well-known mechanical specimen preparation technique which has been gaining attention in the materials science area. Malis and co-workers and Glanvill have demonstrated the usefulness and applicability of this technique to the study of a wide variety of materials including Al alloys, composites, and semiconductors. Ultramicrotomed specimens have uniform thickness with relatively large electron-transparent areas which are suitable for AEM anaysis.Interface Analysis in Type 316 Austenitic Stainless Steel: STEM-EDS microanalysis of grain boundaries in austenitic stainless steels provides important information concerning the development of Cr-depleted zones which accompany M23C6 precipitation, and documentation of radiation induced segregation (RIS). Conventional methods of TEM sample preparation are suitable for the evaluation of thermally induced segregation, but neutron irradiated samples present a variety of problems in both the preparation and in the AEM analysis, in addition to the handling hazard.


PIERS Online ◽  
2005 ◽  
Vol 1 (2) ◽  
pp. 128-132 ◽  
Author(s):  
Habiba Hafdallah Ouslimani ◽  
Redha Abdeddaim ◽  
Alain Priou

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhifang Chai ◽  
Amares Chatt ◽  
Peter Bode ◽  
Jan Kučera ◽  
Robert Greenberg ◽  
...  

AbstractThese recommendations are a vocabulary of basic radioanalytical terms which are relevant to radioanalysis, nuclear analysis and related techniques. Radioanalytical methods consider all nuclear-related techniques for the characterization of materials where ‘characterization’ refers to compositional (in terms of the identity and quantity of specified elements, nuclides, and their chemical species) and structural (in terms of location, dislocation, etc. of specified elements, nuclides, and their species) analyses, involving nuclear processes (nuclear reactions, nuclear radiations, etc.), nuclear techniques (reactors, accelerators, radiation detectors, etc.), and nuclear effects (hyperfine interactions, etc.). In the present compilation, basic radioanalytical terms are included which are relevant to radioanalysis, nuclear analysis and related techniques.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Yuxuan Gong ◽  
Chengquan Qiao ◽  
Bochao Zhong ◽  
Jiarang Zhong ◽  
Decai Gong

2014 ◽  
Vol 11 (03) ◽  
pp. 1343002 ◽  
Author(s):  
GIULIO MAIER ◽  
VLADIMIR BULJAK ◽  
TOMASZ GARBOWSKI ◽  
GIUSEPPE COCCHETTI ◽  
GIORGIO NOVATI

A survey is presented herein of some recent research contributions to the methodology of inverse structural analysis based on statical tests for diagnosis of possibly damaged structures and for mechanical characterization of materials in diverse industrial environments. The following issues are briefly considered: identifications of parameters in material models and of residual stresses on the basis of indentation experiments; mechanical characterization of free-foils and laminates by cruciform and compression tests and digital image correlation measurements; diagnosis, both superficially and in depth, of concrete dams, possibly affected by alkali-silica-reaction or otherwise damaged.


Sign in / Sign up

Export Citation Format

Share Document