The Back Reconstruction of Signals by the NMR Techniques

Author(s):  
Eva Kroutilova ◽  
Miloslav Steinbauer ◽  
Pavel Fiala ◽  
Jarmila Dedkova ◽  
Karel Bartusek
Keyword(s):  
Author(s):  
W.A. Jacob ◽  
R. Hertsens ◽  
A. Van Bogaert ◽  
M. De Smet

In the past most studies of the control of energy metabolism focus on the role of the phosphorylation potential ATP/ADP.Pi on the regulation of respiration. Studies using NMR techniques have demonstrated that the concentrations of these compounds for oxidation phosphorylation do not change appreciably throughout the cardiac cycle and during increases in cardiac work. Hence regulation of energy production by calcium ions, present in the mitochondrial matrix, has been the object of a number of recent studies.Three exclusively intramitochondnal dehydrogenases are key enzymes for the regulation of oxidative metabolism. They are activated by calcium ions in the low micromolar range. Since, however, earlier estimates of the intramitochondnal calcium, based on equilibrium thermodynamic considerations, were in the millimolar range, a physiological correlation was not evident. The introduction of calcium-sensitive probes fura-2 and indo-1 made monitoring of free calcium during changing energy metabolism possible. These studies were performed on isolated mitochondria and extrapolation to the in vivo situation is more or less speculative.


Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
J Tchoumtchoua ◽  
M Halabalaki ◽  
D Njamen ◽  
J Mbanya ◽  
L Skaltsounis

2019 ◽  
Vol 16 (6) ◽  
pp. 474-477 ◽  
Author(s):  
Pham Van Khang ◽  
Nguyen Thi Hien Lan ◽  
Le Quang Truong ◽  
Mai Thi Minh Chau ◽  
Mai Xuan Truong ◽  
...  

In this report, two new steroidal glycosides were isolated and determined from n-butanol fraction of A.asphodeloides. The structures were confirmed in comparison with the spectral data of known compounds by using different spectroscopic analysis approaches including 1D & 2D-NMR techniques and HRMS. The anti-proliferation screening against cancer cell lines A549 and HeLa indicated that compound 1 exhibited good inhibitory activities with IC50 values of 0.79 and 0.55 µg/mL, respectively.


2020 ◽  
Vol 17 (2) ◽  
pp. 185-196
Author(s):  
Shyamal K. Jash ◽  
Dilip Gorai ◽  
Lalan C. Mandal ◽  
Rajiv Roy

Flavonoids are considered as a significant class of compounds among the natural products, exhibiting a variety of structural skeletons as well as multidirectional biological potentials. In structural elucidations of natural products, Nuclear Magnetic Resonance (NMR) spectroscopy has been playing a vital role; the technique is one of the sharpest tools in the hands of natural products chemists. The present resume deals with hard-core applications of such spectral technique, particularly in structural elucidation of flavonoids; different NMR techniques including 1H-NMR, 13C-NMR, and 2D-NMR [viz. 1H-1H COSY, COLOC, HMBC, HMQC] are described in detail.


1997 ◽  
Vol 62 (11) ◽  
pp. 1747-1753 ◽  
Author(s):  
Radek Marek

Determination of 15N chemical shifts and heteronuclear coupling constants of substituted 2,2-dimethylpenta-3,4-dienal hydrazones is presented. The chemical shifts were determined by gradient-enhanced inverse-detected NMR techniques and 1H-15N coupling constants were extracted from phase-sensitive gradient-enhanced single-quantum multiple bond correlation experiments. Stereospecific behaviour of the coupling constants 2J(1H,15N) and 1J(1H,13C) has been used to determine the configuration on a C=N double bond. The above-mentioned compounds exist predominantly as E isomers in deuteriochloroform.


2004 ◽  
Vol 69 (5) ◽  
pp. 996-1008 ◽  
Author(s):  
Steven J. Langford ◽  
Clint P. Woodward

A strategy in preparing a family of hexameric porphyrin cubes based on the interplay of Sn(IV)-O and Ru(II)-N interactions is described. In this first iteration, we have prepared the heptamer [SnIV(TPyP)·(4)2][Ru(CO)(TPP)]6 (4 = (E)-(3-(4-pyridyl)acrylate)) constituting a 5,10,15,20-tetra(4-pyridyl)porphyrin (TPyP) core and 5,10,15,20-tetraphenylporphyrin (TPP) faces and compared its formation by stepwise and "one-pot" strategies where up to nine components are assembled in a single step in a regiospecific manner. In one example, the heptamer is formed around the template [SnIV(TPyP)·(4)2] bearing pyridine groups in which the nitrogens radiate octahedrally along each vertex. The ability to modulate the axial vertex through choice of pyridine is also demonstrated. 1H NMR measurements on [SnIV(TPyP)·(4)2][Ru(CO)(TPP)]6 indicate that the protons on the core template are extremely shielded as a result of the anisotropy of the peripheral porphyrin units. Various NMR techniques, including NOESY experiments, have been used to characterise the heptamer in solution.


ChemInform ◽  
2006 ◽  
Vol 37 (23) ◽  
Author(s):  
Alessandro Bagno ◽  
Federico Rastrelli ◽  
Giacomo Saielli

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kenichi Kamata ◽  
Kenji Mizutani ◽  
Katsuya Takahashi ◽  
Roberta Marchetti ◽  
Alba Silipo ◽  
...  

AbstractSeviL is a recently isolated lectin found to bind to the linear saccharides of the ganglioside GM1b (Neu5Ac$$\alpha$$ α (2-3)Gal$$\beta$$ β (1-3)GalNAc$$\beta$$ β (1-4)Gal$$\beta$$ β (1-4)Glc) and its precursor, asialo-GM1 (Gal$$\beta$$ β (1-3)GalNAc$$\beta$$ β (1-4)Gal$$\beta$$ β (1-4)Glc). The crystal structures of recombinant SeviL have been determined in the presence and absence of ligand. The protein belongs to the $$\beta$$ β -trefoil family, but shows only weak sequence similarity to known structures. SeviL forms a dimer in solution, with one binding site per subunit, close to the subunit interface. Molecular details of glycan recognition by SeviL in solution were analysed by ligand- and protein-based NMR techniques as well as ligand binding assays. SeviL shows no interaction with GM1 due to steric hindrance with the sialic acid branch that is absent from GM1b. This unusual specificity makes SeviL of great interest for the detection and control of certain cancer cells, and cells of the immune system, that display asialo-GM1.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2280
Author(s):  
Tomasz Koczorowski ◽  
Wojciech Szczolko ◽  
Anna Teubert ◽  
Tomasz Goslinski

The syntheses, spectral UV–Vis, NMR, and electrochemical as well as photocatalytic properties of novel magnesium(II) and zinc(II) symmetrical sulfanyl porphyrazines with 2-(morpholin-4-yl)ethylsulfanyl peripheral substituents are presented. Both porphyrazine derivatives were synthesized in cyclotetramerization reactions and subsequently embedded on the surface of commercially available P25 titanium(IV) oxide nanoparticles. The obtained macrocyclic compounds were broadly characterized by ESI MS spectrometry, 1D and 2D NMR techniques, UV–Vis spectroscopy, and subjected to electrochemical studies. Both hybrid materials, consisting of porphyrazine derivatives embedded on the titanium(IV) oxide nanoparticles’ surface, were characterized in terms of particle size and distribution. Next, they were subjected to photocatalytic studies with 1,3-diphenylisobenzofuran, a known singlet oxygen quencher. The applicability of the obtained hybrid material consisting of titanium(IV) oxide P25 nanoparticles and magnesium(II) porphyrazine derivative was assessed in photocatalytic studies with selected active pharmaceutical ingredients, such as diclofenac sodium salt and ibuprofen.


Sign in / Sign up

Export Citation Format

Share Document