A Comparison of Modeling Approaches for the Spread of Prion Diseases in the Brain

Author(s):  
Franziska Matthäus
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lesley Cheng ◽  
Camelia Quek ◽  
Xia Li ◽  
Shayne A. Bellingham ◽  
Laura J. Ellett ◽  
...  

AbstractPrion diseases are distinguished by long pre-clinical incubation periods during which prions actively propagate in the brain and cause neurodegeneration. In the pre-clinical stage, we hypothesize that upon prion infection, transcriptional changes occur that can lead to early neurodegeneration. A longitudinal analysis of miRNAs in pre-clinical and clinical forms of murine prion disease demonstrated dynamic expression changes during disease progression in the affected thalamus region and serum. Serum samples at each timepoint were collected whereby extracellular vesicles (EVs) were isolated and used to identify blood-based biomarkers reflective of pathology in the brain. Differentially expressed EV miRNAs were validated in human clinical samples from patients with human sporadic Creutzfeldt-Jakob disease (sCJD), with the molecular subtype at codon 129 either methionine-methionine (MM, n = 14) or valine-valine (VV, n = 12) compared to controls (n = 20). EV miRNA biomarkers associated with prion infection predicted sCJD with an AUC of 0.800 (85% sensitivity and 66.7% specificity) in a second independent validation cohort (n = 26) of sCJD and control patients with MM or VV subtype. This study discovered clinically relevant miRNAs that benefit diagnostic development to detect prion-related diseases and therapeutic development to inhibit prion infectivity.


2009 ◽  
Vol 17 (04) ◽  
pp. 623-641 ◽  
Author(s):  
FRANZISKA MATTHÄUS

In this paper we will present a modeling approach to describe the progression and the spread of prion diseases in the brain. Although there exist a number of mathematical models for the interaction of prions with their native counterpart, prion transport and spread is usually neglected. The concentration dynamics of prions, and thus the dynamics of the disease progression, however, are influenced by prion transport, especially in a medium as complex as the brain. Therefore, we focus here on the interaction between prion concentration dynamics and prion transport. The model is constructed by combining a model of prion-prion interaction with transport on networks. The approach leads to a system of reaction-diffusion equations, whereby the diffusion term is discrete. The equations are solved numerically on domains given as large networks. We show that the prion concentration grows faster on networks characterized by a higher degree heterogeneity. Furthermore, we introduce cell death as a consequence of increasing prion concentration, leading to network decomposition. We show that infectious diseases destroy networks similarly to targeted attacks, namely by affecting the nodes with the highest degree first. Relating the incubation period and disease progression to the process of network decomposition, we find that, interestingly, a long incubation time followed by sudden onset and fast progression of the disease does not need to be reflected in the overall concentration dynamics of the infective agent.


2019 ◽  
Vol 10 ◽  
pp. 204062231988220 ◽  
Author(s):  
Timothy E. Yap ◽  
Shiama I. Balendra ◽  
Melanie T. Almonte ◽  
M. Francesca Cordeiro

Considering the retina as an extension of the brain provides a platform from which to study diseases of the nervous system. Taking advantage of the clear optical media of the eye and ever-increasing resolution of modern imaging techniques, retinal morphology can now be visualized at a cellular level in vivo. This has provided a multitude of possible biomarkers and investigative surrogates that may be used to identify, monitor and study diseases until now limited to the brain. In many neurodegenerative conditions, early diagnosis is often very challenging due to the lack of tests with high sensitivity and specificity, but, once made, opens the door to patients accessing the correct treatment that can potentially improve functional outcomes. Using retinal biomarkers in vivo as an additional diagnostic tool may help overcome the need for invasive tests and histological specimens, and offers the opportunity to longitudinally monitor individuals over time. This review aims to summarise retinal biomarkers associated with a range of neurological conditions including Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and prion diseases from a clinical perspective. By comparing their similarities and differences according to primary pathological processes, we hope to show how retinal correlates can aid clinical decisions, and accelerate the study of this rapidly developing area of research.


2006 ◽  
Vol 7 (1-2) ◽  
pp. 97-105 ◽  
Author(s):  
Scott P. Leach ◽  
M. D. Salman ◽  
Dwayne Hamar

Transmissible spongiform encephalopathies (TSEs) are a family of neurodegenerative diseases characterized by their long incubation periods, progressive neurological changes, and spongiform appearance in the brain. There is much evidence to show that TSEs are caused by an isoform of the normal cellular surface prion protein PrPC. The normal function of PrPC is still unknown, but it exhibits properties of a cupro-protein, capable of binding up to six copper ions. There are two differing views on copper's role in prion diseases. While one view looks at the PrPC copper-binding as the trigger for conversion to PrPSc, the opposing viewpoint sees a lack of PrPC copper-binding resulting in the conformational change into the disease causing isoform. Manganese and zinc have been shown to interact with PrPC as well and have been found in abnormal levels in prion diseases. This review addresses the interaction between select trace elements and the PrPC.


2011 ◽  
Vol 48 (6) ◽  
pp. 1101-1108 ◽  
Author(s):  
S. Lezmi ◽  
T. Seuberlich ◽  
A. Oevermann ◽  
T. Baron ◽  
A. Bencsik

Scrapie and bovine spongiform encephalopathy (BSE) are both prion diseases affecting ruminants, and these diseases do not share the same public health concerns. Surveillance of the BSE agent in small ruminants has been a great challenge, and the recent identification of diverse prion diseases in ruminants has led to the development of new methods for strain typing. In our study, using immunohistochemistry (IHC), we assessed the distribution of PrPd in the brains of 2 experimentally BSE-infected sheep with the ARQ/ARQ genotype. Distribution of PrPd in the brain, from the spinal cord to the frontal cortex, was remarkably similar in the 2 sheep despite different inoculation routes and incubation periods. Comparatively, overall PrPd brain distribution, evaluated by IHC, in 19 scrapie cases with the ARQ/ARQ, ARQ/VRQ, and VRQ/VRQ genotypes, in some cases showed similarities to the experimentally BSE-infected sheep. There was no exclusive neuroanatomical site with a characteristic and specific PrPd type of accumulation induced by the BSE agent. However, a detailed analysis of the topography, types, and intensity of PrPd deposits in the frontal cortex, striatum, piriform cortex, hippocampus, mesencephalon, and cerebellum allowed the BSE-affected sheep group to be distinguished from the 19 scrapie cases analyzed in our study. These results strengthen and emphasize the potential interest of PrPd brain mapping to help in identifying prion strains in small ruminants.


2015 ◽  
Vol 53 (8) ◽  
pp. 5079-5096 ◽  
Author(s):  
Li-Na Chen ◽  
Qi Shi ◽  
Bao-Yun Zhang ◽  
Xiao-Mei Zhang ◽  
Jing Wang ◽  
...  

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Yong-Chan Kim ◽  
Junbeom Lee ◽  
Dae-Weon Lee ◽  
Byung-Hoon Jeong

AbstractPrion diseases are transmissible spongiform encephalopathies induced by the abnormally-folded prion protein (PrPSc), which is derived from the normal prion protein (PrPC). Previous studies have reported that lipid rafts play a pivotal role in the conversion of PrPC into PrPSc, and several therapeutic strategies targeting lipids have led to prolonged survival times in prion diseases. In addition, phosphatidylethanolamine, a glycerophospholipid member, accelerated prion disease progression. Although several studies have shown that prion diseases are significantly associated with lipids, lipidomic analyses of prion diseases have not been reported thus far. We intraperitoneally injected phosphate-buffered saline (PBS) or ME7 mouse prions into mice and sacrificed them at different time points (3 and 7 months) post-injection. To detect PrPSc in the mouse brain, we carried out western blotting analysis of the left hemisphere of the brain. To identify potential novel lipid biomarkers, we performed lipid extraction on the right hemisphere of the brain and liquid chromatography mass spectrometry (LC/MS) to analyze the lipidomic profiling between non-infected mice and prion-infected mice. Finally, we analyzed the altered lipid-related pathways by a lipid pathway enrichment analysis (LIPEA). We identified a total of 43 and 75 novel potential biomarkers at 3 and 7 months in prion-infected mice compared to non-infected mice, respectively. Among these novel potential biomarkers, approximately 75% of total lipids are glycerophospholipids. In addition, altered lipids between the non-infected and prion-infected mice were related to sphingolipid, glycerophospholipid and glycosylphosphatidylinositol (GPI)-anchor-related pathways. In the present study, we found novel potential biomarkers and therapeutic targets of prion disease. To the best of our knowledge, this study reports the first large-scale lipidomic profiling in prion diseases.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Rodrigo Morales ◽  
Claudia Duran-Aniotz ◽  
Javiera Bravo-Alegria ◽  
Lisbell D. Estrada ◽  
Mohammad Shahnawaz ◽  
...  

AbstractPrevious studies showed that injection of tissue extracts containing amyloid-β (Aβ) aggregates accelerate amyloid deposition in the brain of mouse models of Alzheimer’s disease (AD) through prion-like mechanisms. In this study, we evaluated whether brain amyloidosis could be accelerated by blood infusions, procedures that have been shown to transmit prion diseases in animals and humans. Young transgenic mice infused with whole blood or plasma from old animals with extensive Aβ deposition in their brains developed significantly higher levels brain amyloidosis and neuroinflammation compared to untreated animals or mice infused with wild type blood. Similarly, intra-venous injection of purified Aβ aggregates accelerated amyloid pathology, supporting the concept that Aβ seeds present in blood can reach the brain to promote neuropathological alterations in the brain of treated animals. However, an amyloid-enhancing effect of other factors present in the blood of donors cannot be discarded. Our results may help to understand the role of peripheral (amyloid-dependent or -independent) factors implicated in the development of AD and uncover new strategies for disease intervention.


2020 ◽  
Vol 21 (19) ◽  
pp. 7260
Author(s):  
Keiji Uchiyama ◽  
Hironori Miyata ◽  
Yoshitaka Yamaguchi ◽  
Morikazu Imamura ◽  
Mariya Okazaki ◽  
...  

Conformational conversion of the cellular prion protein, PrPC, into the abnormally folded isoform, PrPSc, is a key pathogenic event in prion diseases. However, the exact conversion mechanism remains largely unknown. Transgenic mice expressing PrP with a deletion of the central residues 91–106 were generated in the absence of endogenous PrPC, designated Tg(PrP∆91–106)/Prnp0/0 mice and intracerebrally inoculated with various prions. Tg(PrP∆91–106)/Prnp0/0 mice were resistant to RML, 22L and FK-1 prions, neither producing PrPSc∆91–106 or prions in the brain nor developing disease after inoculation. However, they remained marginally susceptible to bovine spongiform encephalopathy (BSE) prions, developing disease after elongated incubation times and accumulating PrPSc∆91–106 and prions in the brain after inoculation with BSE prions. Recombinant PrP∆91-104 converted into PrPSc∆91–104 after incubation with BSE-PrPSc-prions but not with RML- and 22L–PrPSc-prions, in a protein misfolding cyclic amplification assay. However, digitonin and heparin stimulated the conversion of PrP∆91–104 into PrPSc∆91–104 even after incubation with RML- and 22L-PrPSc-prions. These results suggest that residues 91–106 or 91–104 of PrPC are crucially involved in prion pathogenesis in a strain-dependent manner and may play a similar role to digitonin and heparin in the conversion of PrPC into PrPSc.


Sign in / Sign up

Export Citation Format

Share Document