A Robust Geometric Model for Argument Classification

Author(s):  
Cristina Giannone ◽  
Danilo Croce ◽  
Roberto Basili ◽  
Diego De Cao
Keyword(s):  
2019 ◽  
pp. 40-47
Author(s):  
E. A. Mironchik

The article discusses the method of solving the task 18 on the Unified State Examination in Informatics (Russian EGE). The main idea of the method is to write the conditions of the problem utilizing the language of formal logic, using elementary predicates. According to the laws of logic the resulting complex logical expression would be transformed into an expression, according to which a geometric model is supposed to be constructed which allows to obtain an answer. The described algorithm does allow high complexity problem to be converted into a simple one.


Author(s):  
Т. В. Самодурова ◽  
О. В. Гладышева ◽  
Н. Ю. Алимова ◽  
Е. А. Бончева

Постановка задачи. Рассмотрена задача моделирования отложения снега во время метелей на автомагистралях с барьерными ограждениями в программе FlowVision . Результаты. В качестве опытного участка рассмотрен участок автомагистрали, проходящий в насыпи. Создана геометрическая модель участка автомагистрали. Обоснованы информационные ресурсы для создания гидродинамической модели обтекания насыпи автомагистрали с барьерными ограждениями снеговетровым потоком во время метелей. Проведено моделирование процесса снегонакопления на опытном участке с использованием программного комплекса FlowVision во время метелей с различными параметрами. Выводы. Сделан вывод о возможности применения программного комплекса FlowVision для совершенствования методики назначения снегозащитных устройств и определения параметров снегоочистки при зимнем содержании автомобильных дорог. Statement of the problem. The problems of snow deposit modeling on the highways with crash barriers during blizzards in the FlowVision was discussed. Results. The highway section passing in the embankment as an experimental section has been considered. The geometric model of the highway section was created. The information resources for designing a hydrodynamic model of a snowflow stream of highway embankment with barriers during blizzard were identified. The modeling of the snow deposit process in the experimental section using the FlowVision software during blizzards with different parameters was carried out. Conclusions. It was concluded that it is possible to use the FlowVision software to improve the methodology for snow protection designing and determining snow removal parameters for winter road maintenance.


2019 ◽  
pp. 32-35
Author(s):  
V. V. Artyushenko ◽  
A. V. Nikulin

In this article we consider a problem of reliable modeling of echo signals and angle noise of distributed objects using twodimensional geometric models with random statistically unrelated signals. The conditions that ensure the invariance of distribution parameters of the angle noise generated by an arbitrary N-point configuration of a two-dimensional geometric model are obtained. In the particular case of a model whose emitters are supplied with signals of equal power, the conditions of invariance are reduced to the location of the model points on the plane in the form of a regular polygon. These results can be used to synthesize mathematical models used for simulating reflections from distributed objects and for developing a hardware-software complex for the simulation of electromagnetic fields reflected from the Earth surface, atmospheric inhomogeneities, the sea surface, etc.


2015 ◽  
Vol 12 (19) ◽  
pp. 5871-5883 ◽  
Author(s):  
L. A. Melbourne ◽  
J. Griffin ◽  
D. N. Schmidt ◽  
E. J. Rayfield

Abstract. Coralline algae are important habitat formers found on all rocky shores. While the impact of future ocean acidification on the physiological performance of the species has been well studied, little research has focused on potential changes in structural integrity in response to climate change. A previous study using 2-D Finite Element Analysis (FEA) suggested increased vulnerability to fracture (by wave action or boring) in algae grown under high CO2 conditions. To assess how realistically 2-D simplified models represent structural performance, a series of increasingly biologically accurate 3-D FE models that represent different aspects of coralline algal growth were developed. Simplified geometric 3-D models of the genus Lithothamnion were compared to models created from computed tomography (CT) scan data of the same genus. The biologically accurate model and the simplified geometric model representing individual cells had similar average stresses and stress distributions, emphasising the importance of the cell walls in dissipating the stress throughout the structure. In contrast models without the accurate representation of the cell geometry resulted in larger stress and strain results. Our more complex 3-D model reiterated the potential of climate change to diminish the structural integrity of the organism. This suggests that under future environmental conditions the weakening of the coralline algal skeleton along with increased external pressures (wave and bioerosion) may negatively influence the ability for coralline algae to maintain a habitat able to sustain high levels of biodiversity.


2015 ◽  
Vol 741 ◽  
pp. 133-137
Author(s):  
Xian Zhao Jia ◽  
Yong Fei Wang

To ensure wheel body of the hoisting sheave strength and stability condition. For the purpose of wheel body lightweighting. There are two schemes to reduce body weight.Reduce the spokes at the same time increase the ring stiffened plate, and reduce the spokes at the same time change the spokes width and thickness.The wheel body was established based on Pro/E 3D geometric model. Import the mesh in the Workbench of ANSYS software for finite element model. Statics analysis to select the optimized scheme. Establish a hoisting sheave wheel body under the actual working condition of widening the width - deformation - wheel weight relational table. Analysis to lightweight at the same time ensure that stiffness of wheel,then it can obtaine the optimal result.


Author(s):  
Annika Niemann ◽  
Samuel Voß ◽  
Riikka Tulamo ◽  
Simon Weigand ◽  
Bernhard Preim ◽  
...  

Abstract Purpose For the evaluation and rupture risk assessment of intracranial aneurysms, clinical, morphological and hemodynamic parameters are analyzed. The reliability of intracranial hemodynamic simulations strongly depends on the underlying models. Due to the missing information about the intracranial vessel wall, the patient-specific wall thickness is often neglected as well as the specific physiological and pathological properties of the vessel wall. Methods In this work, we present a model for structural simulations with patient-specific wall thickness including different tissue types based on postmortem histologic image data. Images of histologic 2D slices from intracranial aneurysms were manually segmented in nine tissue classes. After virtual inflation, they were combined into 3D models. This approach yields multiple 3D models of the inner and outer wall and different tissue parts as a prerequisite for subsequent simulations. Result We presented a pipeline to generate 3D models of aneurysms with respect to the different tissue textures occurring in the wall. First experiments show that including the variance of the tissue in the structural simulation affect the simulation result. Especially at the interfaces between neighboring tissue classes, the larger influence of stiffer components on the stability equilibrium became obvious. Conclusion The presented approach enables the creation of a geometric model with differentiated wall tissue. This information can be used for different applications, like hemodynamic simulations, to increase the modeling accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1228
Author(s):  
Ting On Chan ◽  
Linyuan Xia ◽  
Yimin Chen ◽  
Wei Lang ◽  
Tingting Chen ◽  
...  

Ancient pagodas are usually parts of hot tourist spots in many oriental countries due to their unique historical backgrounds. They are usually polygonal structures comprised by multiple floors, which are separated by eaves. In this paper, we propose a new method to investigate both the rotational and reflectional symmetry of such polygonal pagodas through developing novel geometric models to fit to the 3D point clouds obtained from photogrammetric reconstruction. The geometric model consists of multiple polygonal pyramid/prism models but has a common central axis. The method was verified by four datasets collected by an unmanned aerial vehicle (UAV) and a hand-held digital camera. The results indicate that the models fit accurately to the pagodas’ point clouds. The symmetry was realized by rotating and reflecting the pagodas’ point clouds after a complete leveling of the point cloud was achieved using the estimated central axes. The results show that there are RMSEs of 5.04 cm and 5.20 cm deviated from the perfect (theoretical) rotational and reflectional symmetries, respectively. This concludes that the examined pagodas are highly symmetric, both rotationally and reflectionally. The concept presented in the paper not only work for polygonal pagodas, but it can also be readily transformed and implemented for other applications for other pagoda-like objects such as transmission towers.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2232
Author(s):  
Antonio Albiol ◽  
Alberto Albiol ◽  
Carlos Sánchez de Merás

Automated fruit inspection using cameras involves the analysis of a collection of views of the same fruit obtained by rotating a fruit while it is transported. Conventionally, each view is analyzed independently. However, in order to get a global score of the fruit quality, it is necessary to match the defects between adjacent views to prevent counting them more than once and assert that the whole surface has been examined. To accomplish this goal, this paper estimates the 3D rotation undergone by the fruit using a single camera. A 3D model of the fruit geometry is needed to estimate the rotation. This paper proposes to model the fruit shape as a 3D spheroid. The spheroid size and pose in each view is estimated from the silhouettes of all views. Once the geometric model has been fitted, a single 3D rotation for each view transition is estimated. Once all rotations have been estimated, it is possible to use them to propagate defects to neighbor views or to even build a topographic map of the whole fruit surface, thus opening the possibility to analyze a single image (the map) instead of a collection of individual views. A large effort was made to make this method as fast as possible. Execution times are under 0.5 ms to estimate each 3D rotation on a standard I7 CPU using a single core.


Sign in / Sign up

Export Citation Format

Share Document