Urban Computing and Smart Cities: Opportunities and Challenges in Modelling Large-Scale Aggregated Human Behavior

Author(s):  
Nuria Oliver
Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 218
Author(s):  
Ala’ Khalifeh ◽  
Khalid A. Darabkh ◽  
Ahmad M. Khasawneh ◽  
Issa Alqaisieh ◽  
Mohammad Salameh ◽  
...  

The advent of various wireless technologies has paved the way for the realization of new infrastructures and applications for smart cities. Wireless Sensor Networks (WSNs) are one of the most important among these technologies. WSNs are widely used in various applications in our daily lives. Due to their cost effectiveness and rapid deployment, WSNs can be used for securing smart cities by providing remote monitoring and sensing for many critical scenarios including hostile environments, battlefields, or areas subject to natural disasters such as earthquakes, volcano eruptions, and floods or to large-scale accidents such as nuclear plants explosions or chemical plumes. The purpose of this paper is to propose a new framework where WSNs are adopted for remote sensing and monitoring in smart city applications. We propose using Unmanned Aerial Vehicles to act as a data mule to offload the sensor nodes and transfer the monitoring data securely to the remote control center for further analysis and decision making. Furthermore, the paper provides insight about implementation challenges in the realization of the proposed framework. In addition, the paper provides an experimental evaluation of the proposed design in outdoor environments, in the presence of different types of obstacles, common to typical outdoor fields. The experimental evaluation revealed several inconsistencies between the performance metrics advertised in the hardware-specific data-sheets. In particular, we found mismatches between the advertised coverage distance and signal strength with our experimental measurements. Therefore, it is crucial that network designers and developers conduct field tests and device performance assessment before designing and implementing the WSN for application in a real field setting.


Author(s):  
Bassel Al Homssi ◽  
Akram Al-Hourani ◽  
Kagiso Magowe ◽  
James Delaney ◽  
Neil Tom ◽  
...  
Keyword(s):  

Smart Cities ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 662-685
Author(s):  
Stephan Olariu

Under present-day practices, the vehicles on our roadways and city streets are mere spectators that witness traffic-related events without being able to participate in the mitigation of their effect. This paper lays the theoretical foundations of a framework for harnessing the on-board computational resources in vehicles stuck in urban congestion in order to assist transportation agencies with preventing or dissipating congestion through large-scale signal re-timing. Our framework is called VACCS: Vehicular Crowdsourcing for Congestion Support in Smart Cities. What makes this framework unique is that we suggest that in such situations the vehicles have the potential to cooperate with various transportation authorities to solve problems that otherwise would either take an inordinate amount of time to solve or cannot be solved for lack for adequate municipal resources. VACCS offers direct benefits to both the driving public and the Smart City. By developing timing plans that respond to current traffic conditions, overall traffic flow will improve, carbon emissions will be reduced, and economic impacts of congestion on citizens and businesses will be lessened. It is expected that drivers will be willing to donate under-utilized on-board computing resources in their vehicles to develop improved signal timing plans in return for the direct benefits of time savings and reduced fuel consumption costs. VACCS allows the Smart City to dynamically respond to traffic conditions while simultaneously reducing investments in the computational resources that would be required for traditional adaptive traffic signal control systems.


2011 ◽  
Vol 10 (4) ◽  
pp. 45-53 ◽  
Author(s):  
Nicholas D. Lane ◽  
Ye Xu ◽  
Hong Lu ◽  
Andrew T. Campbell ◽  
Tanzeem Choudhury ◽  
...  

2014 ◽  
Vol 37 (1) ◽  
pp. 20-21 ◽  
Author(s):  
Roy F. Baumeister ◽  
Kathleen D. Vohs ◽  
E. J. Masicampo

AbstractPsychologists debate whether consciousness or unconsciousness is most central to human behavior. Our goal, instead, is to figure out how they work together. Conscious processes are partly produced by unconscious processes, and much information processing occurs outside of awareness. Yet, consciousness has advantages that the unconscious does not. We discuss how consciousness causes behavior, drawing conclusions from large-scale literature reviews.


Author(s):  
Fan Zuo ◽  
Abdullah Kurkcu ◽  
Kaan Ozbay ◽  
Jingqin Gao

Emergency events affect human security and safety as well as the integrity of the local infrastructure. Emergency response officials are required to make decisions using limited information and time. During emergency events, people post updates to social media networks, such as tweets, containing information about their status, help requests, incident reports, and other useful information. In this research project, the Latent Dirichlet Allocation (LDA) model is used to automatically classify incident-related tweets and incident types using Twitter data. Unlike the previous social media information models proposed in the related literature, the LDA is an unsupervised learning model which can be utilized directly without prior knowledge and preparation for data in order to save time during emergencies. Twitter data including messages and geolocation information during two recent events in New York City, the Chelsea explosion and Hurricane Sandy, are used as two case studies to test the accuracy of the LDA model for extracting incident-related tweets and labeling them by incident type. Results showed that the model could extract emergency events and classify them for both small and large-scale events, and the model’s hyper-parameters can be shared in a similar language environment to save model training time. Furthermore, the list of keywords generated by the model can be used as prior knowledge for emergency event classification and training of supervised classification models such as support vector machine and recurrent neural network.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Minyu Shi ◽  
Yongting Zhang ◽  
Huanhuan Wang ◽  
Junfeng Hu ◽  
Xiang Wu

The innovation of the deep learning modeling scheme plays an important role in promoting the research of complex problems handled with artificial intelligence in smart cities and the development of the next generation of information technology. With the widespread use of smart interactive devices and systems, the exponential growth of data volume and the complex modeling requirements increase the difficulty of deep learning modeling, and the classical centralized deep learning modeling scheme has encountered bottlenecks in the improvement of model performance and the diversification of smart application scenarios. The parallel processing system in deep learning links the virtual information space with the physical world, although the distributed deep learning research has become a crucial concern with its unique advantages in training efficiency, and improving the availability of trained models and preventing privacy disclosure are still the main challenges faced by related research. To address these above issues in distributed deep learning, this research developed a clonal selective optimization system based on the federated learning framework for the model training process involving large-scale data. This system adopts the heuristic clonal selective strategy in local model optimization and optimizes the effect of federated training. First of all, this process enhances the adaptability and robustness of the federated learning scheme and improves the modeling performance and training efficiency. Furthermore, this research attempts to improve the privacy security defense capability of the federated learning scheme for big data through differential privacy preprocessing. The simulation results show that the proposed clonal selection optimization system based on federated learning has significant optimization ability on model basic performance, stability, and privacy.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Nicolas Pröllochs ◽  
Dominik Bär ◽  
Stefan Feuerriegel

AbstractEmotions are regarded as a dominant driver of human behavior, and yet their role in online rumor diffusion is largely unexplored. In this study, we empirically study the extent to which emotions explain the diffusion of online rumors. We analyze a large-scale sample of 107,014 online rumors from Twitter, as well as their cascades. For each rumor, the embedded emotions were measured based on eight so-called basic emotions from Plutchik’s wheel of emotions (i.e., anticipation–surprise, anger–fear, trust–disgust, joy–sadness). We then estimated using a generalized linear regression model how emotions are associated with the spread of online rumors in terms of (1) cascade size, (2) cascade lifetime, and (3) structural virality. Our results suggest that rumors conveying anticipation, anger, and trust generate more reshares, spread over longer time horizons, and become more viral. In contrast, a smaller size, lifetime, and virality is found for surprise, fear, and disgust. We further study how the presence of 24 dyadic emotional interactions (i.e., feelings composed of two emotions) is associated with diffusion dynamics. Here, we find that rumors cascades with high degrees of aggressiveness are larger in size, longer-lived, and more viral. Altogether, emotions embedded in online rumors are important determinants of the spreading dynamics.


Author(s):  
Eduardo Felipe Zambom Santana ◽  
Nelson Lago ◽  
Fabio Kon ◽  
Dejan S. Milojicic

Sign in / Sign up

Export Citation Format

Share Document