scholarly journals Minimum Latency Submodular Cover

Author(s):  
Sungjin Im ◽  
Viswanath Nagarajan ◽  
Ruben van der Zwaan
Keyword(s):  
2011 ◽  
Vol 2011 ◽  
pp. 1-19
Author(s):  
Vinod Namboodiri ◽  
Abtin Keshavarzian

Collection of rare but delay-critical messages from a group of sensor nodes is a key process in many wireless sensor network applications. This is particularly important for security-related applications like intrusion detection and fire alarm systems. An event sensed by multiple sensor nodes in the network can trigger many messages to be sent simultaneously. We present Alert, a MAC protocol for collecting event-triggered urgent messages from a group of sensor nodes with minimum latency and without requiring any cooperation or prescheduling among the senders or between senders and receiver during protocol execution. Alert is designed to handle multiple simultaneous messages from different nodes efficiently and reliably, minimizing the overall delay to collect all messages along with the delay to get the first message. Moreover, the ability of the network to handle a large number of simultaneous messages does not come at the cost of excessive delays when only a few messages need to be handled. We analyze Alert and evaluate its feasibility and performance with an implementation on commodity hardware. We further compare Alert with existing approaches through simulations and show the performance improvement possible through Alert.


Author(s):  
Subhadeep Banik ◽  
Takanori Isobe ◽  
Fukang Liu ◽  
Kazuhiko Minematsu ◽  
Kosei Sakamoto

We present Orthros, a 128-bit block pseudorandom function. It is designed with primary focus on latency of fully unrolled circuits. For this purpose, we adopt a parallel structure comprising two keyed permutations. The round function of each permutation is similar to Midori, a low-energy block cipher, however we thoroughly revise it to reduce latency, and introduce different rounds to significantly improve cryptographic strength in a small number of rounds. We provide a comprehensive, dedicated security analysis. For hardware implementation, Orthros achieves the lowest latency among the state-of-the-art low-latency primitives. For example, using the STM 90nm library, Orthros achieves a minimum latency of around 2.4 ns, while other constructions like PRINCE, Midori-128 and QARMA9-128- σ0 achieve 2.56 ns, 4.10 ns, 4.38 ns respectively.


Fuzzy Systems ◽  
2017 ◽  
pp. 516-539
Author(s):  
Nazanin Saadat ◽  
Amir Masoud Rahmani

One of the challenges of data grid is to access widely distributed data fast and efficiently and providing maximum data availability with minimum latency. Data replication is an efficient way used to address this challenge by replicating and storing replicas, making it possible to access similar data in different locations of the data grid and can shorten the time of getting the files. However, as the number and storage size of grid sites is limited and restricted, an optimized and effective replacement algorithm is needed to improve the efficiency of replication. In this paper, the authors propose a novel two-level replacement algorithm which uses Fuzzy Replica Preserving Value Evaluator System (FRPVES) for evaluating the value of each replica. The algorithm was tested using a grid simulator, OptorSim developed by European Data Grid projects. Results from simulation procedure show that the authors' proposed algorithm has better performance in comparison with other algorithms in terms of job execution time, total number of replications and effective network usage.


Sign in / Sign up

Export Citation Format

Share Document