High Surface Ozone Episodes at New Delhi, India

Author(s):  
Nandita D. Ganguly ◽  
Chris Tzanis
2013 ◽  
Vol 87 (10) ◽  
pp. 947-951 ◽  
Author(s):  
N. D. Ganguly

2012 ◽  
Vol 117 (D21) ◽  
pp. n/a-n/a ◽  
Author(s):  
Meiyun Lin ◽  
Arlene M. Fiore ◽  
Owen R. Cooper ◽  
Larry W. Horowitz ◽  
Andrew O. Langford ◽  
...  

2018 ◽  
Author(s):  
Jean J. Guo ◽  
Arlene M. Fiore ◽  
Lee T. Murray ◽  
Daniel A. Jaffe ◽  
Jordan L. Schnell ◽  
...  

Abstract. U.S. background ozone (O3) includes O3 produced from anthropogenic O3 precursors emitted outside of the U.S.A., from global methane, and from any natural sources. Using a suite of sensitivity simulations in the GEOS-Chem global chemistry-transport model, we estimate the influence from individual background versus U.S. anthropogenic sources on total surface O3 over ten continental U.S. regions from 2004–2012. Evaluation with observations reveals model biases of +0–19 ppb in seasonal mean maximum daily 8-hour average (MDA8) O3, highest in summer over the eastern U.S.A. Simulated high-O3 events cluster too late in the season. We link these model biases to regional O3 production (e.g., U.S. anthropogenic, biogenic volatile organic compounds (BVOC), and soil NOx, emissions), or coincident missing sinks. On the ten highest observed O3 days during summer (O3_top10obs_JJA), U.S. anthropogenic emissions enhance O3 by 5–11 ppb and by less than 2 ppb in the eastern versus western U.S.A. The O3 enhancement from BVOC emissions during summer is 1–7 ppb higher on O3_top10obs_JJA days than on average days, while intercontinental pollution is up to 2 ppb higher on average vs. on O3_top10obs_JJA days. In the model, regional sources of O3 precursor emissions drive interannual variability in the highest observed O3 levels. During the summers of 2004–2012, monthly regional mean U.S. background O3 MDA8 levels vary by 10–20 ppb. Simulated summertime total surface O3 levels on O3_top10obs_JJA days decline by 3 ppb (averaged over all regions) from 2004–2006 to 2010–2012 in both the observations and the model, reflecting rising U.S. background (+2 ppb) and declining U.S. anthropogenic O3 emissions (−6 ppb). The model attributes interannual variability in U.S. background O3 on O3_top10obs days to natural sources, not international pollution transport. We find that a three-year averaging period is not long enough to eliminate interannual variability in background O3.


MAUSAM ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 111-118
Author(s):  
SUNIL KUMAR PESHIN ◽  
PRIYANKA SINHA ◽  
AMIT BISHT

Diwali is one of the major and most important festivals celebrated all over India which falls in the period late October to early November every year. It is associated with burning of firecrackers especially during the night of Diwali day that leads to degradation of air quality that lasts for a longer duration of time. Firecrackers on burning releases huge amount of trace gases such as NOx, CO, SO2 and O3 and huge amount of aerosols and particulate matter. The present study focuses on the influence of firecrackers  emissions on surface ozone(O3) ,oxides of nitrogen (NOx) and particulate matter (PM10 and PM2.5)concentration over the capital urban metropolis of India, New Delhi during Diwali festivity period from 2013-2015. A sharp increase is observed in surface ozone, NOx and particulate matter concentration during the Diwali day as compared to control day for 2013 to 2015 which is mainly attributed to burning of firecrackers. However the average concentration levels of the  gaseous pollutants and particulate matter (PM10 and PM2.5) on Diwali day exhibited a decline in 2015 and 2014 as compared to 2013 due to increase in  awareness campaigns among public and increased cost of firecrackers.  


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Kai-Lan Chang ◽  
Martin G. Schultz ◽  
Xin Lan ◽  
Audra McClure-Begley ◽  
Irina Petropavlovskikh ◽  
...  

This paper is aimed at atmospheric scientists without formal training in statistical theory. Its goal is to (1) provide a critical review of the rationale for trend analysis of the time series typically encountered in the field of atmospheric chemistry, (2) describe a range of trend-detection methods, and (3) demonstrate effective means of conveying the results to a general audience. Trend detections in atmospheric chemical composition data are often challenged by a variety of sources of uncertainty, which often behave differently to other environmental phenomena such as temperature, precipitation rate, or stream flow, and may require specific methods depending on the science questions to be addressed. Some sources of uncertainty can be explicitly included in the model specification, such as autocorrelation and seasonality, but some inherent uncertainties are difficult to quantify, such as data heterogeneity and measurement uncertainty due to the combined effect of short and long term natural variability, instrumental stability, and aggregation of data from sparse sampling frequency. Failure to account for these uncertainties might result in an inappropriate inference of the trends and their estimation errors. On the other hand, the variation in extreme events might be interesting for different scientific questions, for example, the frequency of extremely high surface ozone events and their relevance to human health. In this study we aim to (1) review trend detection methods for addressing different levels of data complexity in different chemical species, (2) demonstrate that the incorporation of scientifically interpretable covariates can outperform pure numerical curve fitting techniques in terms of uncertainty reduction and improved predictability, (3) illustrate the study of trends based on extreme quantiles that can provide insight beyond standard mean or median based trend estimates, and (4) present an advanced method of quantifying regional trends based on the inter-site correlations of multisite data. All demonstrations are based on time series of observed trace gases relevant to atmospheric chemistry, but the methods can be applied to other environmental data sets.


2017 ◽  
Vol 114 (10) ◽  
pp. 2491-2496 ◽  
Author(s):  
Lu Shen ◽  
Loretta J. Mickley

We develop a statistical model to predict June–July–August (JJA) daily maximum 8-h average (MDA8) ozone concentrations in the eastern United States based on large-scale climate patterns during the previous spring. We find that anomalously high JJA ozone in the East is correlated with these springtime patterns: warm tropical Atlantic and cold northeast Pacific sea surface temperatures (SSTs), as well as positive sea level pressure (SLP) anomalies over Hawaii and negative SLP anomalies over the Atlantic and North America. We then develop a linear regression model to predict JJA MDA8 ozone from 1980 to 2013, using the identified SST and SLP patterns from the previous spring. The model explains ∼45% of the variability in JJA MDA8 ozone concentrations and ∼30% variability in the number of JJA ozone episodes (>70 ppbv) when averaged over the eastern United States. This seasonal predictability results from large-scale ocean–atmosphere interactions. Warm tropical Atlantic SSTs can trigger diabatic heating in the atmosphere and influence the extratropical climate through stationary wave propagation, leading to greater subsidence, less precipitation, and higher temperatures in the East, which increases surface ozone concentrations there. Cooler SSTs in the northeast Pacific are also associated with more summertime heatwaves and high ozone in the East. On average, models participating in the Atmospheric Model Intercomparison Project fail to capture the influence of this ocean–atmosphere interaction on temperatures in the eastern United States, implying that such models would have difficulty simulating the interannual variability of surface ozone in this region.


2012 ◽  
Vol 2012 ◽  
pp. 1-5
Author(s):  
Nandita D. Ganguly

The influence of air pollution on the erythemal ultraviolet irradiance (UVI) reaching the earth's surface has been investigated at the Indian Antarctic station Maitri and compared with that at New Delhi, the capital of India, over a period of three years from 2005 to 2007. Total ozone column (TOC), surface ozone, NO2 column, middle tropospheric SO2 column, and BrO column are observed to exhibit a deceasing trend at Maitri, having a clean and pristine environment, while UVI and aerosol optical depth at 500 nm exhibit an increasing trend. This negative correlation suggests that O3, NO2, SO2, and BrO act as filters against erythemal ultraviolet irradiance reaching the earth's surface, while the aerosols, which are present in the atmosphere of Maitri, may not be either very effective in filtering out the UVI reaching the earth's surface or may not be large enough to produce measurable effects on UVI. TOC and BrO column are observed to exhibit a deceasing trend at New Delhi, having comparatively higher levels of pollution, while UVI, NO2 column, middle tropospheric SO2 column, surface ozone, and aerosol optical depth at 500 nm exhibit an increasing trend. This suggests that TOC and BrO act as filters against UVI, while NO2, surface ozone, SO2, and aerosols in the atmosphere of New Delhi may not be large enough to produce measurable effects on UVI.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Nandita D. Ganguly

The surface ozone levels in some Indian cities have increased significantly in the recent years. Ozone being toxic to the living system and an important contributor to anthropogenic global warming, enhanced surface ozone may have adverse effects on the air quality and climate. Transport of ozone from the stratosphere to the troposphere causes stratospheric ozone to decrease and tropospheric ozone to increase, which can in turn have serious consequences for life on earth. Since stratosphere-troposphere exchange (STE) is an important factor influencing the ozone concentration in the troposphere, this paper investigates probably for the first time the possible contribution of STE events to the observed enhanced surface ozone levels for cities covering from north to south of India. It is concluded that apart from transport processes and in situ photochemical production, STE also influences the observed high-surface ozone levels in Indian cities to a small extent (8%–16%). STE events producing high-surface ozone levels are found to be higher at high latitudes.


2021 ◽  
Author(s):  
Biswajit Bera ◽  
Sumana Bhattacharjee ◽  
Pravat Kumar Shit ◽  
Nairita Sengupta ◽  
Soumik Saha

Abstract Worldwide spread out of COVID-19 in a short-time has brought a significant decline of road traffic, tourist flow and industrial ventures. During this emergency period, the restricted human dealings with nature have appeared as blessing for health of the total environment. The variation of atmospheric O3 may modulate the range of UV index (UVI) at any region of the earth. The objective of the study is to examine the alteration of UV index over the megacities of India with respect to tropospheric O3 level modification during COVID-19 lockdown. The spatiotemporal data of UVI, over the major megacities of India (New Delhi, Mumbai, Kolkata, and Chennai) have been extracted from Tropospheric Emission Monitoring Internet Service. The monthly average surface ozone concentration throughout the time frame of 2019 and 2020 has been obtained from NASA Earth Observatory (NEO) hub. The meteorological or environmental data (temperature in °C, gust in km/h, wind speed km/h, relative humidity in %, air pressure in mb and cloud cover in okta) of four selective megacities of India (Kolkata, Chennai, Delhi, Mumbai) during and pre lockdown period have been acquired from world weather online. The descriptive statistical applications i.e. standard deviation, standard errors and K-means clustering have been done through standard statistical software. The result shows that the four major megacities in India namely New Delhi, Mumbai, Kolkata and Chennai have experienced the vibrant diminution in terms of the concentration of UV index with slightly increasing the tropospheric O3 level during the lockdown phase. In the meantime, the prominent reduction of NOx during the lockdown period decreases the titration impact to O3 and this mechanism helps to revitalize the ozone concentration level. The uniqueness of the current study is highlighted the ground reality regarding reduction of UV index and amplification of tropospheric O3 concentration during lockdown phase. This study definitely assists to make new environmental policy, act and law for recover the health of the total environment.


Sign in / Sign up

Export Citation Format

Share Document