LISEM: A Physically-Based Hydrologic and Soil Erosion Catchment Model

1998 ◽  
pp. 429-440 ◽  
Author(s):  
Ad de Roo ◽  
Victor Jetten ◽  
Cees Wesseling ◽  
Coen Ritsema
2011 ◽  
Vol 367 ◽  
pp. 815-825 ◽  
Author(s):  
M.O. Isikwue ◽  
T.G. Amile

The equations of Erosion 2D Model (a physically based model) were transformed into a computer programme called EROSOFT and used to predict the rate of soil loss in Makurdi metropolis. The model has detachment, transport and deposition components. Four sites were chosen within the metropolis for this study. Soil samples were collected from the sites for laboratory analysis. Rainfall and runoff fluids were collected from the sites to determine their densities. Levelling instrument was used to detremine the channels slopes. The model predicted an average annual soil loss rate of 310kg m-2s-1 for the metropolis. The sensitivity analysis of the model indicates that straight slopes are more prone to soil erosion. The result of the model deviates slightly from established facts that, sandy soils are more erodible and hence prone to be easily detached. Nevertheless, the model shows that soil erosion is influenced by slope geometry and rainfall intensity. The study attributes the major causes of soil erosion in the city to urban runoff concentration and removal of vegetation, and therefore suggests the use of land grading, land forming and cover cropping as well as conservation structures like road side drains for the control of erosion in the metropolis.


Soil Research ◽  
1999 ◽  
Vol 37 (1) ◽  
pp. 1 ◽  
Author(s):  
B. Yu ◽  
C. W. Rose

When physically based erosion models such as GUEST are used to determine soil erodibility parameters or to predict the rate of soil loss, data on runoff rates, as distinct from event runoff amount, are often needed. Data on runoff rates, however, are not widely available. This paper describes methods that can be used to overcome this lack of data on runoff rates. These methods require only rainfall rates and runoff amounts, which are usually available for sites set up primarily to test and validate the USLE technology. In addition, the paper summarises the data requirements for the erosion model GUEST and application procedures. In the accompanying paper, these methods are applied to 4 experimental sites in the ASIALAND Network.


2020 ◽  
Author(s):  
Silvia Kohnová ◽  
Zuzana Németová

<p>At present, the occurrence of extreme precipitation events is becoming more and more frequent and therefore it is important to quantify their impact on the landscape and soil degradation processes. Until now a wide range of soil erosion models have been developed and many significant studies performed to evaluate soil erosion processes at local and regional level, but there are still many modeling principles that suffer from a range of problems. The general problem in soil erosion modelling lies in the validation and verification of the methodologies used. The validation of erosion models is a very complicated and complex process due to lack of suitable sites, financial demands and due to the high temporal and spatial variability. The paper points to validate the physically and event-based Erosion-3D model predominantly developed to calculate the amounts of soil loss, surface runoff, and depositions resulting from natural and design rainfall events. In the study two different erosion assessment methods were chosen in order to compare diverse evaluation approaches. Both water erosion assessment methods used have certain advantages and disadvantages, but nowadays the use of physically-based models, which are a younger generation of models, are regarded to be a more innovative and effective technique for the evaluation of complex runoff-erosion processes, deposition and transport processes. The significant contribution of physically-based models is seen in their more precise representation of the erosion and deposition processes, a more proper calculation of the erosion, deposition and sediment yields and the application of more complicated characteristics, including fluctuating soil conditions and surface properties in comparison with empirical models. The validation of the models was performed based on the continuous rainfall events for the period selected (2015, 2016 and 2017). The extreme rainfall events occurring during the period were chosen and their serious impact on the agricultural land was modeled. The modelled sediment data were compared with the measured sediment deposition data obtained by a bathymetry survey of the Svacenicky Creek polder. The polder is situated in the middle of the Myjava hill lands in the western part of Slovakia and the bathymetry measurement were conducted using a hydrographical survey using the EcoMapper Autonomous Underwater Vehicle (AUV) device. The results of the study include a comparison between the modelled and measured data and an assessment of the impact of the intensive rainfall events on the investigated territory.</p><p>Key words: intensive rainfall events, agricultural land, soil degradation processes, hydrological extremes, physically-based model</p>


2009 ◽  
Vol 40 (4) ◽  
pp. 347-363 ◽  
Author(s):  
J. R. Hansen ◽  
J. C. Refsgaard ◽  
V. Ernstsen ◽  
S. Hansen ◽  
M. Styczen ◽  
...  

This paper presents a modelling approach where the entire land-based hydrological and nitrogen cycle from field to river outlet was included. This approach is based on a combination of a physically based root zone model (DAISY) and a physically based distributed catchment model (MIKE SHE/MIKE11). Large amounts of data available from statistical databases and surface maps were used for determination of land use and management practises to predict leaching within the catchment. The modelling approach included a description of nitrate transformations in the root zone, denitrification in the saturated zone, wetland areas and the river system within the catchment. The modelling approach was applied for the Odense Fjord catchment which constitutes one of the pilot river basins for implementation of the European Water Framework Directive. The model simulated overall nitrogen fluxes in the river system consistent with the observed values but showed some discrepancies between simulated and observed daily discharge values The results showed significant differences of denitrification capacities between larger areas such as sub-catchments. This approach has great potential for optimal planning of the establishment of wetlands and further land use legislation with respect to high denitrification rates.


Geomorphology ◽  
2015 ◽  
Vol 243 ◽  
pp. 106-115 ◽  
Author(s):  
Sabatino Cuomo ◽  
Maria Della Sala ◽  
Antonio Novità

Author(s):  
E. E. De Figueiredo ◽  
C. C. R. A. Souto ◽  
Z. C. Vieira

Abstract. In the semi arid Cariri region of the state of Paraiba, Brazil, runoff is of the Hortonian type generated by excess of rainfall over infiltration capacity, and soil erosion is governed by rainfall intensity and sediment size. However, the governing sediment transport mechanism is not well understood. Sediment transport generally depends on the load of sediment provided by soil erosion and on the transport capacity of the flow. The latter is mainly governed by mechanisms such as water shear stress, or stream power. Accordingly, the load of sediment transported by the flow may vary depending on the mechanism involved in the equation of estimation. Investigation of the sediment transport capacity of the flow via a distributed physically-based model is an important and necessary task, but quite rare in semi-arid climates, and particularly in the Cariri region of the state of Paraíba/Brazil. In this study, the equations of Yalin, Engelund & Hansen, Laursen, DuBoys and Bagnold have been coupled with the MOSEE distributed physically based model aiming at identifying the mechanisms leading to the best model simulations when compared with data observed at various basin scales and land uses in the study region. The results obtained with the investigated methods were quite similar and satisfactory suggesting the feasibility of the mechanisms involved, but the observed values were better represented with Bagnold’s equation, which is physically grounded on the stream power, and we recommend it for simulations of similar climate, runoff generation mechanisms and sediment characteristics as in the study region.


2021 ◽  
Author(s):  
Ijasini John Tekwa ◽  
Abubakar Musa Kundiri

Soil erosion is a severe degradation phenomena that has since received huge attention among earth scientists in the developed worlds, and same efforts are now extending to Africa and other parts of underdeveloped worlds. This chapter focuses on collation, analyzing and appraising of soil ero¬sion studies around Mubi region, Northeast Nigeria, where the Mandara mountain ranges is notably responsible for spurring soil erosion. This chapter reviewed reports on the: (a) Mubi regional soil properties, erosion processes and principles of their occurrence, (b) soil erosion predictions using empirical and physically-based models by researchers, and, (c) economicimplications and managements of soil erosion in the region. This chapter reveals that classical and rill/ephemeral gully (EG) erosion features received more research attention than surface erosion such as splash and sheet. No information was reported on effects of landslides/slumping noticeable along rivers/stream banks around the region. The few economic analysis reported for soil nutrient and sediments entrained by concentrated flow channels were very high and intolerable to the predominantly peasant farmers in the region. It is hoped that the considerable volumes of erosion researches and recommendations assembled in this chapter shall be carefully implemented by prospective farmers, organizations, and residents in the Mubi region.


Sign in / Sign up

Export Citation Format

Share Document