Molecular Mechanisms Regulating the Early Development of the Vertebrate Nervous System

Author(s):  
J. D. Burrill ◽  
H. Saueressig ◽  
M. Goulding
Development ◽  
1999 ◽  
Vol 126 (3) ◽  
pp. 443-456 ◽  
Author(s):  
M.a. Torii ◽  
F. Matsuzaki ◽  
N. Osumi ◽  
K. Kaibuchi ◽  
S. Nakamura ◽  
...  

Like other tissues and organs in vertebrates, multipotential stem cells serve as the origin of diverse cell types during genesis of the mammalian central nervous system (CNS). During early development, stem cells self-renew and increase their total cell numbers without overt differentiation. At later stages, the cells withdraw from this self-renewal mode, and are fated to differentiate into neurons and glia in a spatially and temporally regulated manner. However, the molecular mechanisms underlying this important step in cell differentiation remain poorly understood. In this study, we present evidence that the expression and function of the neural-specific transcription factors Mash-1 and Prox-1 are involved in this process. In vivo, Mash-1- and Prox-1-expressing cells were defined as a transient proliferating population that was molecularly distinct from self-renewing stem cells. By taking advantage of in vitro culture systems, we showed that induction of Mash-1 and Prox-1 coincided with an initial step of differentiation of stem cells. Furthermore, forced expression of Mash-1 led to the down-regulation of nestin, a marker for undifferentiated neuroepithelial cells, and up-regulation of Prox-1, suggesting that Mash-1 positively regulates cell differentiation. In support of these observations in vitro, we found specific defects in cellular differentiation and loss of expression of Prox-1 in the developing brain of Mash-1 mutant mice in vivo. Thus, we propose that induction of Mash-1 and Prox-1 is one of the critical molecular events that control early development of the CNS.


2020 ◽  
Vol 21 (15) ◽  
pp. 5475 ◽  
Author(s):  
Manuela Pennisi ◽  
Giuseppe Lanza ◽  
Luca Falzone ◽  
Francesco Fisicaro ◽  
Raffaele Ferri ◽  
...  

Increasing evidence suggests that Severe Acute Respiratory Syndrome-coronavirus-2 (SARS-CoV-2) can also invade the central nervous system (CNS). However, findings available on its neurological manifestations and their pathogenic mechanisms have not yet been systematically addressed. A literature search on neurological complications reported in patients with COVID-19 until June 2020 produced a total of 23 studies. Overall, these papers report that patients may exhibit a wide range of neurological manifestations, including encephalopathy, encephalitis, seizures, cerebrovascular events, acute polyneuropathy, headache, hypogeusia, and hyposmia, as well as some non-specific symptoms. Whether these features can be an indirect and unspecific consequence of the pulmonary disease or a generalized inflammatory state on the CNS remains to be determined; also, they may rather reflect direct SARS-CoV-2-related neuronal damage. Hematogenous versus transsynaptic propagation, the role of the angiotensin II converting enzyme receptor-2, the spread across the blood-brain barrier, the impact of the hyperimmune response (the so-called “cytokine storm”), and the possibility of virus persistence within some CNS resident cells are still debated. The different levels and severity of neurotropism and neurovirulence in patients with COVID-19 might be explained by a combination of viral and host factors and by their interaction.


2021 ◽  
Vol 22 (3) ◽  
pp. 1448
Author(s):  
Jessica Aijia Liu ◽  
Jing Yu ◽  
Chi Wai Cheung

Pain can be induced by tissue injuries, diseases and infections. The interactions between the peripheral nervous system (PNS) and immune system are primary actions in pain sensitizations. In response to stimuli, nociceptors release various mediators from their terminals that potently activate and recruit immune cells, whereas infiltrated immune cells further promote sensitization of nociceptors and the transition from acute to chronic pain by producing cytokines, chemokines, lipid mediators and growth factors. Immune cells not only play roles in pain production but also contribute to PNS repair and pain resolution by secreting anti-inflammatory or analgesic effectors. Here, we discuss the distinct roles of four major types of immune cells (monocyte/macrophage, neutrophil, mast cell, and T cell) acting on the PNS during pain process. Integration of this current knowledge will enhance our understanding of cellular changes and molecular mechanisms underlying pain pathogenies, providing insights for developing new therapeutic strategies.


e-Neuroforum ◽  
2017 ◽  
Vol 23 (4) ◽  
Author(s):  
Jens Rettig ◽  
David R. Stevens

AbstractThe release of neurotransmitters at synapses belongs to the most important processes in the central nervous system. In the last decades much has been learned about the molecular mechanisms which form the basis for this fundamental process. Highly regulated exocytosis, based on the SNARE (soluble N-ethylmaleimide-sensitive attachment protein receptor) complex and its regulatory molecules is the signature specialization of the nervous system and is shared by neurons and neuroendocrine cells. Cells of the immune system use a similar mechanism to release cytotoxic materials from secretory granules at contacts with virally or bacterially infected cells or cancer cells, in order to remove these threats. These contact zones have been termed immunological synapses in reference to the highly specific targeted exocytosis of effector molecules. Recent findings indicate that mutations in SNARE or SNARE-interacting proteins are the basis of a number of devastating immunological diseases. While SNARE complexes are ubiquitous and mediate a wide variety of membrane fusion events it is surprising that in many cases the SNARE proteins involved in immunological synapses are the same molecules which mediate regulated exocytosis of transmitters and hormones in neurons and neuroendocrine cells. These similarities raise the possibility that results obtained at immunological synapses may be applicable, in particular in the area of presynaptic function, to neuronal synapses. Since immunological synapses (IS) are assembled and disassembled in about a half an hour, the use of immune cells isolated from human blood allows not only the study of the molecular mechanisms of synaptic transmission in human cells, but is particularly suited to the examination of the assembly and disassembly of these “synapses” via live imaging. In this overview we discuss areas of similarity between synapses of the nervous and immune systems and in the process will refer to results of our experiments of the last few years.


Development ◽  
1958 ◽  
Vol 6 (3) ◽  
pp. 479-485
Author(s):  
Sulo Toivonen

In 1952, Nieuwkoop et al. suggested a new hypothesis concerning the induction phenomenon determining the early development of the amphibian embryo. This hypothesis was based on cleverly planned experiments in which folds of competent epidermis were transplanted on to different regions of the neural plate of the neurula. According to this hypothesis, the invaginating archenteron roof is supposed first to activate the overlying ectoderm, enabling it to develop autonomously to archencephalon and its derivatives. This same archenteron roof is later thought to exert a second effect, which they called transformation. This second action is considered responsible for modifying the differentiation tendencies of the activated archencephalon so as to result in structures typical of more caudal regions of the nervous system. This process is regarded as a quantitative one, so that with increasing strength of transformation, the differentiation tendencies would be progressively more caudal.


2019 ◽  
Vol 653 ◽  
pp. 675-683 ◽  
Author(s):  
Le Yue ◽  
Feiran Chen ◽  
Kaiqiang Yu ◽  
Zhenggao Xiao ◽  
Xiaoyu Yu ◽  
...  

2013 ◽  
Vol 141 (1) ◽  
pp. 27-31
Author(s):  
Yoshiki Yanagawa ◽  
Yasunori Kubo ◽  
Machiko Matsumoto ◽  
Hiroko Togashi

2021 ◽  
Vol 40 (4) ◽  
pp. 13-24
Author(s):  
Igor V. Litvinenko ◽  
Igor V. Krasakov

The involvement of the nervous system in the pathological process that occurs when COVID-19 is infected is becoming more and more obvious. The question of the possibility of the debut or progression of the already developed Parkinsonism syndrome in patients who have undergone COVID-19 is regularly raised. A large number of hypotheses are put forward to explain this relationship. It is assumed that a violation of iron metabolism in the brain may underlie the development and progression of neurodegenerative diseases, including after the new coronavirus infection SARS-CoV-2. The analysis of stu dies on the possible influence of iron metabolism disorders on the occurrence and mechanism of development of neurodegenerative diseases after infection with SARS-CoV-2 has been carried out. The processes of physiological maintenance of iron homeostasis, as well as the influence of physiological aging on the accumulation of iron in the central nervous system are described. The relationship between hyperferritinemia occurring in COVID-19 and ferroptosis as the basis of the neurodegenerative process in Parkinsons disease and Alzheimers disease is discussed. The main molecular mechanisms involved in ferroptosis are described. Examples of involvement of metal homeostasis disorders in the process of altering the structure of -synuclein, synthesis of -amyloid, hyperphosphorylated tau- protein are given. The causes of excessive iron accumulation in certain brain structures are discussed. The question of the possibility of using the assessment of changes in iron metabolism as a new biomarker of the progression of Parkinsons disease is analyzed. (1 figure, bibliography: 62 refs)


Sign in / Sign up

Export Citation Format

Share Document