Superoxide Dismutase and Reduced Glutathione: Possible Defenses Operating in Hyperoxic Swimbladder of Fish

Author(s):  
V. Calabrese ◽  
F. Guerrera ◽  
M. Avitabile ◽  
M. Fama ◽  
V. Rizza
Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 882
Author(s):  
Masood Alam Khan ◽  
Arif Khan ◽  
Mohd Azam ◽  
Khaled S. Allemailem ◽  
Faris Alrumaihi ◽  
...  

Cryptococcus neoformans infections rose sharply due to rapid increase in the numbers of immunocompromised individuals in recent years. Treatment of Cryptococcosis in immunocompromised persons is largely very challenging and hopeless. Hence, this study aimed to determine the activity of ellagic acid (EA) in the treatment of C. neoformans in cyclophosphamide injected leukopenic mice. A liposomal formulation of ellagic acid (Lip-EA) was prepared and characterized, and its antifungal activity was assessed in comparison to fluconazole (FLZ). The efficacy of the drug treatment was tested by assessing survival rate, fungal burden, and histological analysis in lung tissues. The safety of the drug formulations was tested by investigating hepatic, renal function, and antioxidant levels. The results of the present work demonstrated that Lip-EA, not FLZ, effectively eliminated C. neoformans infection in the leukopenic mice. Mice treated with Lip-EA (40 mg/kg) showed 70% survival rate and highly reduced fungal burden in their lung tissues, whereas the mice treated with FLZ (40 mg/kg) had 20% survival rate and greater fungal load in their lungs. Noteworthy, Lip-EA treatment alleviated cyclophosphamide-induced toxicity and restored hepatic and renal function parameters. Moreover, Lip-EA treatment restored the levels of superoxide dismutase and reduced glutathione and catalase in the lung tissues. The effect of FLZ or EA or Lip-EA against C. neoformans infection was assessed by the histological analysis of lung tissues. Lip-EA effectively reduced influx of inflammatory cells, thickening of alveolar walls, congestion, and hemorrhage. The findings of the present study suggest that Lip-EA may prove to be a promising therapeutic formulation against C. neoformans in immunocompromised persons.


2015 ◽  
Vol 62 (2) ◽  
pp. 13-19
Author(s):  
Urmila Jarouliya ◽  
Anish Zacharia ◽  
Raj K. Keservani ◽  
Godavarthi B.K.S Prasad

Abstract Diabetes mellitus is a metabolic disorder characterised by hyperglycemia and oxidative stress. The aim of the present study is to explore the antioxidant effect of Spirulina maxima in rat model along with the histopathological observations. Diabetes was induced by feeding 10% fructose solution orally to Wistar rats (n = 6) for 30 days, analysed for plasma blood glucose and the markers of the oxidative stress [catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH) and thiobarbituric acid reactive substances (TBARS)]. These biochemical studies were associated with histopathological examination of liver and kidney sections. The microalga Spirulina maxima being rich in proteins and other essential nutrients is widely used as a food supplement. S. maxima at a dose of 5 and 10% per kg and the metformin (500 mg/kg) as reference drug were given orally for 30 days to the diabetic rats. Diabetic rats showed significant (p < 0.001) elevations in plasma blood glucose, thiobarbituric acid-reactive substances and significant reduction in catalase, superoxide dismutase and reduced glutathione activity. Oral administration of 5 and 10% aqueous extract of S. maxima for 30 days restored not only of blood glucose levels but also markers of oxidative stress. Histopathological observations of tissues manifested that the S. maxima administration had the protective and therapeutic effects against fructose-induced abnormalities in diabetic rats. It is concluded that S. maxima is effective in reinstating the antioxidant activity in addition to its antidiabetic effect in type 2 diabetic rats.


2020 ◽  
pp. ijgc-2020-001587
Author(s):  
Daciele Paola Preci ◽  
Angélica Almeida ◽  
Anne Liss Weiler ◽  
Maria Luiza Mukai Franciosi ◽  
Andréia Machado Cardoso

The pathogenesis of cervical cancer is related to oxidative damage caused by persistent infection by one of the oncogenic types of human papillomavirus (HPV). This damage comes from oxidative stress, which is the imbalance caused by the increase in reactive oxygen and nitrogen species and impaired antioxidant mechanisms, promoting tumor progression through metabolic processes. The incorporation of HPV into the cellular genome leads to the expression of oncoproteins, which are associated with chronic inflammation and increased production of reactive oxygen species, oxidizing proteins, lipids and DNA. The increase in these parameters is related, in general, to the reduction of circulating levels of enzymatic antioxidants—superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase; and non-enzymatic antioxidants—reduced glutathione, coenzyme Q10 and vitamins A, C and E, according to tumor staging. In contrast, some enzymatic antioxidants suffer upregulation in the tumor tissue as a way of adapting to the oxidative environment generated by themselves, such as glutathione-S-transferase, reduced glutathione, glutathione peroxidase, superoxide dismutase 2, induced nitric oxide synthase, peroxiredoxins 1, 3 and 6, and thioredoxin reductase 2. The decrease in the expression and activity of certain circulatory antioxidants and increasing the redox status of the tumor cells are thus key to cervical carcinoma prognosis. In addition, vitamin deficit is considered a possible modifiable risk factor by supplementation, since the cellular functions can have a protective effect on the development of cervical cancer. In this review, we will discuss the impact of oxidative damage on cervical cancer progression, as well as the main oxidative markers and therapeutic potentialities of antioxidants.


2000 ◽  
Vol 78 (4) ◽  
pp. 447-453 ◽  
Author(s):  
F Liu ◽  
T B Ng

Male Sprague-Dawley rats were randomly divided into four groups. Two of the groups received a single intraperitoneal injection of melatonin and 5-methoxytryptamine (5 mg/kg body weight), respectively, at 9 PM. One group received an intraperitoneal injection of 5-methoxytryptophol (5 mg/kg body weight) at 9 AM. The remaining group received alcoholic saline (vehicle) and served as the control. All rats were sacrificed 90 min after injection and the livers, kidneys, and brains were dissected. The activities of superoxide dismutase, catalase, and glutathione reductase in the organs were measured. It was found that both melatonin and 5-methoxytryptamine were approximately equipotent in enhancing the activities of superoxide dismutase and glutathione reductase in the kidney and liver, while 5-methoxytryptophol displayed a weaker effect. Both melatonin and 5-methoxytryptamine augmented the level of reduced glutathione in the kidney and liver, while 5-methoxytryptophol did so only in the kidney. All three pineal indoles increased the activity of superoxide dismutase and lowered the ratio of oxidized to reduced glutathione in the brain.Key words: pineal indoles, catalase, superoxide dismutase, glutathione reductase.


1981 ◽  
Vol 200 (3) ◽  
pp. 685-690 ◽  
Author(s):  
K Grankvist

Chemiluminescence of luminol in a cell-free system was used to investigate the mechanism of alloxan-dependent free-radical generation. In the presence of alloxan and reduced glutathione (GSH), luminescence was greatly stimulated by FeSO4. Replacing GSH by oxidized glutathione or NAD(P)(H), or replacing FeSO4 by CuSO4, ZNSO4 or FeCl3, did not yield chemiluminescence. The chemiluminescence of a mixture of alloxan. GSH, FeSO4 and luminol was inhibited by catalase, superoxide dismutase, scavengers of hydroxyl radicals (sodium benzoate, n-butanol, D-mannitol, dimethyl sulphoxide) or metal-ion chelators (EDTA, diethylenetriaminepenta-acetic acid, diethyldithiocarbamate. desferroxamine), D-glucose, L-glucose, D-mannose, D-fructose, 3-O-methyl-D-glucose, NAD+, NADH, NADP+ or NADPH, but not by urea or enzymically inactive superoxide dismutase. The results support the hypothesis that the diabetogenic action of alloxan is mediated by hydroxyl radicals generated in an iron-catalysed reaction. Protection against alloxan in vivo depends both on the chemical reactivity of protector with radicals or radical-generating systems and on the stereospecific requirement of some strategic site in the B-cell.


10.5219/1375 ◽  
2020 ◽  
Vol 14 ◽  
pp. 836-846
Author(s):  
Olena Shatynska ◽  
Oleksandr Tokarskyy ◽  
Petro Lykhatskyi ◽  
Olha Yaremchuk ◽  
Iryna Bandas ◽  
...  

The purpose of the current study was to evaluate the protective properties of dietary magnesium supplementation on pancreatic tissue of rats with alloxan-induced diabetes mellitus. Twenty-five male Wistar rats were split into five groups (control, diabetes, diabetes with 100 mg Mg daily, diabetes with 250 mg Mg daily, diabetes with 500 mg Mg daily) with feeding supplementation starting on day 1, diabetes induction on day 21, and animal sacrifice on day 30. Fasting glucose in blood serum was measured on days 21, 25, 27, and day 30. Glucose metabolism enzymes, namely, lactate dehydrogenase and glucose-6-phosphate dehydrogenase, were measured in pancreatic tissue upon the sacrifice, as well as lipid peroxidation, antioxidant system protective enzymes (catalase and superoxide dismutase), and glutathione system components (glutathione reductase, glutathione peroxidase, and glutathione reduced). Pearson correlation coefficients showed strong negative correlation between serum glucose (control and diabetic animals) and glucose metabolism enzymes, catalase, superoxide dismutase, glutathione peroxidase in pancreatic tissue (r >-0.9, p <0.05), moderate negative correlation with reduced glutathione (r = -0.79, p <0.05), moderate positive correlation with lipid peroxidation index (r = +0.67, p <0.05), weak correlation with glutathione reductase (r = -0.57, p <0.05). Magnesium supplementation slowed down diabetes onset considering fasting glucose levels in rats (p <0.05), as well as partially restored investigated dehydrogenase levels in the pancreas of rats comparing to diabetes group (p <0.05). The lipid peroxidation index varied between treatments showing the dose-dependent influence of Mg2+. Magnesium supplementation partially restored catalase and superoxide dismutase activities in pancreatic tissue, as well as glutathione peroxidase and reduced glutathione levels (p <0.05), while glutathione reductase levels remained unaffected (p >0.05). The obtained results suggested a model, where magnesium ions may have a possible protective effect on pancreatic tissue against the negative influence of alloxan inside β cells of the pancreas.


1983 ◽  
Vol 216 (2) ◽  
pp. 503-506 ◽  
Author(s):  
R G Allen ◽  
K J Farmer ◽  
R S Sohal

The effects of total inhibition of catalase, induced by 3-amino-1,2,4-triazole, on the adult housefly (Musca domestica) were examined. The lack of catalase activity had no effect on the longevity of the houseflies. Inorganic-peroxide concentration was elevated at younger ages, but declined in older flies. The rate of oxygen consumption by the flies was greatly decreased and the levels of oxidized as well as reduced glutathione were augmented. Superoxide dismutase activity showed a slight increase. This study suggests that loss of catalase activity does not affect survival of houseflies due to adaptive responses.


Sign in / Sign up

Export Citation Format

Share Document