Starch Biosynthesis in Storage Organs

1994 ◽  
pp. 159-172
Author(s):  
Alison M. Smith ◽  
Kay Denyer ◽  
Cathie Martin
Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1152 ◽  
Author(s):  
Yong-Gu Cho ◽  
Kwon-Kyoo Kang

In plants, starch is synthesized in leaves during the day-time from fixed carbon through photosynthesis and is mobilized at night to support continued respiration, sucrose export, and growth in the dark. The main crops where starch is biosynthesized and stored are corn, rice, wheat, and potatoes, and they are mainly used as food resources for humankind. There are many genes that are involved in starch biosynthesis from cytosol to storage organs in plants. ADP-glucose, UDP- glucose, and glucose-6-phosphate are synthesized catalyzed by UDP-invertase, AGPase, hexokinase, and P- hexose-isomerase in cytosol. Starch composed of amylopectin and amylose is synthesized by starch synthase, granule bound starch synthase, starch-branching enzyme, debranching enzyme, and pullulanase, which is primarily responsible for starch production in storage organs. Recently, it has been uncovered that structural genes are controlled by proteins derived from other genes such as transcription factors. To obtain more precise information on starch metabolism, the functions of genes and transcription factors need to be studied to understand their roles and functions in starch biosynthesis in plants. However, the roles of genes related to starch biosynthesis are not yet clearly understood. The papers of this special issue contain reviews and research articles on these topics and will be a useful resource for researchers involved in the quality improvement of starch storage crops.


1992 ◽  
pp. 273-288
Author(s):  
Cathie Martin ◽  
Madan Bhattacharyya ◽  
Ian Dry ◽  
Cliff Hedley ◽  
Noel Ellis ◽  
...  

1999 ◽  
Vol 133 (3) ◽  
pp. 243-249 ◽  
Author(s):  
NIGEL G. HALFORD

The most important harvested organs of crop plants, such as seeds, tubers and fruits, are often described as assimilate sinks. They play little or no part in the fixation of carbon through the production of sugars through photosynthesis, or in the uptake of nitrogen and sulphur, but import these assimilated resources to support metabolism and to store them in the form of starch, oils and proteins. Wild plants store resources in seeds and tubers to later support an emergent young plant. Cultivated crops are effectively storing resources to provide us with food and many have been bred to accumulate much more than would be required otherwise. For example, approximately 80% of a cultivated potato plant's dry weight is contained in its tubers, ten times the proportion in the tubers of its wild relatives (Inoue & Tanaka 1978). Cultivation and breeding has brought about a shift in the partitioning of carbon and nitrogen assimilate between the organs of the plant.


2013 ◽  
Vol 38 (1) ◽  
pp. 22-26
Author(s):  
Yong-xia YANG ◽  
Bing-jin SHI ◽  
Xiao-long WANG ◽  
Qi FENG ◽  
Song-tao ZHANG ◽  
...  

2020 ◽  
Vol 06 ◽  
Author(s):  
Faiq H. S. Hussain ◽  
Hawraz Ibrahim M. Amin ◽  
Dinesh kumar Patel ◽  
Omji Porwal

: The family Iridaceae contains 92 genera and more than 1800 species, mostly perennial herbs with underground storage organs called rhizomes (bulbs). Some genera are important in traditional medicines, especially Iris and Gladiolus. The genus Iris belongs to this family and comprises about hundreds species among them, 12 species are found in Iraq. It has been widely used various medicines worldwide especially Iris persica is used in folk medicine in the Kurdistan region of Iraq as an effective treatment against tumours, antibacterial, antifungal and treating inflammation. Earlier finding confirmed that Iris persica and its constituents play role in the scavenging of free radical generation and prevention of disease pathogenesis. Each part of the Iris persica herb has some medicinal property. This review gives a eagle eye view mainly on the biological activities of the Iris persica and some of their compounds isolated, pharmacological actions of the Iris persica extracts and products, and plausible medicinal and therapeutically applications.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 289
Author(s):  
Gurman Grewal ◽  
Bahar Patlar ◽  
Alberto Civetta

In Drosophila, male reproductive fitness can be affected by any number of processes, ranging from development of gametes, transfer to and storage of mature sperm within the female sperm storage organs, and utilization of sperm for fertilization. We have previously identified the 89B cytogenetic map position of D. melanogaster as a hub for genes that effect male paternity success when disturbed. Here, we used RNA interference to test 11 genes that are highly expressed in the testes and located within the 89B region for their role in sperm competition and male fecundity when their expression is perturbed. Testes-specific knockdown (KD) of bor and CSN5 resulted in complete sterility, whereas KD of CG31287, Manf and Mst89B, showed a breakdown in sperm competitive success when second to mate (P2 < 0.5) and reduced fecundity in single matings. The low fecundity of Manf KD is explained by a significant reduction in the amount of mature sperm produced. KD of Mst89B and CG31287 does not affect sperm production, sperm transfer into the female bursa or storage within 30 min after mating. Instead, a significant reduction of sperm in female storage is observed 24 h after mating. Egg hatchability 24 h after mating is also drastically reduced for females mated to Mst89B or CG31287 KD males, and this reduction parallels the decrease in fecundity. We show that normal germ-line expression of Mst89B and CG31287 is needed for effective sperm usage and egg fertilization.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Lenka Sentenská ◽  
Aileen Neumann ◽  
Yael Lubin ◽  
Gabriele Uhl

Abstract Background Mating generally occurs after individuals reach adulthood. In many arthropods including spiders, the adult stage is marked by a final moult after which the genitalia are fully developed and functional. In several widow spider species (genus Latrodectus), however, immature females may mate a few days before they moult to adulthood, i.e. in their late-subadult stage. While the “adult” mating typically results in cannibalism, males survive the “immature” mating. During both “immature” and “adult” matings, males leave parts of their paired copulatory organs within female genitalia, which may act as mating plugs. To study potential costs and benefits of the two mating tactics, we investigated female genital morphology of the brown widow spider, L. geometricus. Light microscopy, histology and micro-computed tomography of early-subadult, late-subadult and adult females were conducted to determine the overall pattern of genital maturation. We compared genitalia of mated late-subadult and adult females to reveal potential differences in the genitalic details that might indicate differential success in sperm transfer and different environments for sperm storage and sperm competition. Results We found that the paired sperm storage organs (spermathecae) and copulatory ducts are developed already in late-subadult females and host sperm after immature mating. However, the thickness of the spermathecal cuticle and the staining of the secretions inside differ significantly between the late-subadult and adult females. In late-subadult females mating plugs were found with higher probability in both spermathecae compared to adult females. Conclusions Sperm transfer in matings with late-subadult females follows the same route as in matings with adult females. The observed differences in the secretions inside the spermathecae of adult and late-subadult females likely reflect different storage conditions for the transferred sperm which may lead to a disadvantage under sperm competition if the subadult female later re-mates with another male. However, since males mating with late-subadult females typically transfer sperm to both spermathecae they might benefit from numerical sperm competition as well as from monopolizing access to the female sperm storage organs. The assessment of re-mating probability and relative paternity will clarify the costs and benefits of the two mating tactics in light of these findings.


2011 ◽  
Vol 157 (1) ◽  
pp. 518-530 ◽  
Author(s):  
Kazuhiko Enami ◽  
Tomoki Ozawa ◽  
Noriko Motohashi ◽  
Masayuki Nakamura ◽  
Kan Tanaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document