Evaluating the Terrestrial Water Balance from the Historical Climate Record

Author(s):  
David R. Legates ◽  
Cort J. Willmott
2009 ◽  
Vol 3 (2) ◽  
pp. 761-780 ◽  
Author(s):  
Michael L. Roderick ◽  
Michael T. Hobbins ◽  
Graham D. Farquhar

2003 ◽  
Vol 17 (13) ◽  
pp. 2521-2539 ◽  
Author(s):  
Michael A. Rawlins ◽  
Richard B. Lammers ◽  
Steve Frolking ◽  
Bal�zs M. Fekete ◽  
Charles J. Vorosmarty

2021 ◽  
Vol 48 (4) ◽  
pp. 459-473
Author(s):  
O. N. Nasonova ◽  
E. M. Gusev ◽  
E. E. Kovalev ◽  
E. A. Shurkhno

2011 ◽  
Vol 12 (5) ◽  
pp. 869-884 ◽  
Author(s):  
Ingjerd Haddeland ◽  
Douglas B. Clark ◽  
Wietse Franssen ◽  
Fulco Ludwig ◽  
Frank Voß ◽  
...  

Abstract Six land surface models and five global hydrological models participate in a model intercomparison project [Water Model Intercomparison Project (WaterMIP)], which for the first time compares simulation results of these different classes of models in a consistent way. In this paper, the simulation setup is described and aspects of the multimodel global terrestrial water balance are presented. All models were run at 0.5° spatial resolution for the global land areas for a 15-yr period (1985–99) using a newly developed global meteorological dataset. Simulated global terrestrial evapotranspiration, excluding Greenland and Antarctica, ranges from 415 to 586 mm yr−1 (from 60 000 to 85 000 km3 yr−1), and simulated runoff ranges from 290 to 457 mm yr−1 (from 42 000 to 66 000 km3 yr−1). Both the mean and median runoff fractions for the land surface models are lower than those of the global hydrological models, although the range is wider. Significant simulation differences between land surface and global hydrological models are found to be caused by the snow scheme employed. The physically based energy balance approach used by land surface models generally results in lower snow water equivalent values than the conceptual degree-day approach used by global hydrological models. Some differences in simulated runoff and evapotranspiration are explained by model parameterizations, although the processes included and parameterizations used are not distinct to either land surface models or global hydrological models. The results show that differences between models are a major source of uncertainty. Climate change impact studies thus need to use not only multiple climate models but also some other measure of uncertainty (e.g., multiple impact models).


2009 ◽  
Vol 22 (20) ◽  
pp. 5366-5384 ◽  
Author(s):  
Scott J. Weaver ◽  
Alfredo Ruiz-Barradas ◽  
Sumant Nigam

Abstract The evolution of the atmospheric and land surface states during extreme hydroclimate episodes over North America is investigated using the North American Regional Reanalysis (NARR), which additionally, and successfully, assimilates precipitation. The pentad-resolution portrayals of the atmospheric and terrestrial water balance over the U.S. Great Plains during the 1988 summer drought and the July 1993 floods are analyzed to provide insight into the operative mechanisms including regional circulation (e.g., the Great Plains low-level jet, or GPLLJ) and hydroclimate (e.g., precipitation, evaporation, soil moisture recharge, runoff). The submonthly (but supersynoptic time scale) fluctuations of the GPLLJ are found to be very influential, through related moisture transport and kinematic convergence (e.g., ∂υ/∂y), with the jet anomalies in the southern plains leading the northern precipitation and related moisture flux convergence, accounting for two-thirds of the dry and wet episode precipitation amplitude. The soil moisture influence on hydroclimate evolution is assessed to be marginal as evaporation anomalies are found to lag precipitation ones, a lead–lag not discernible at monthly resolution. The pentad analysis thus corroborates the authors’ earlier findings on the importance of transported moisture over local evaporation in Great Plains’ summer hydroclimate variability. The regional water budgets—atmospheric and terrestrial—are found to be substantially unbalanced, with the terrestrial imbalance being unacceptably large. Pentad analysis shows the atmospheric imbalance to arise from the sluggishness of the NARR evaporation, including its overestimation in wet periods. The larger terrestrial imbalance, on the other hand, has its origins in the striking unresponsiveness of the NARR’s runoff, which is underestimated in wet episodes. Finally, the influence of ENSO and North Atlantic Oscillation (NAO) variability on the GPLLJ is quantified during the wet episode, in view of the importance of moisture transports. It is shown that a significant portion (∼25%) of the GPLLJ anomaly (and downstream precipitation) is attributable to NAO and ENSO’s influence, and that this combined influence prolongs the wet episode beyond the period of the instigating GPLLJ.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Min Xu ◽  
Shichang Kang ◽  
Qiudong Zhao ◽  
Jiazhen Li

Changes in permafrost influence water balance exchanges in watersheds of cryosphere. Water storage change (WSC) is an important factor in water cycle. We used Gravity Recovery and Climate Experiment (GRACE) satellite data to retrieve WSC in the Three-River Source Region and subregions. WSC in four types of permafrost (continuous, seasonal, island, and patchy permafrost) was analyzed during 2003–2010. The result showed that WSC had significant change; it increased by9.06±0.01 mm/a (21.89±0.02×109 m3) over the Three-River Source Region during the study period. The most significant changes of WSC were in continuous permafrost zone, with a total amount of about13.94±0.48×109 m3. The spatial distribution of WSC was in state of gain in the continuous permafrost zone, whereas it was in a state of loss in the other permafrost zones. Little changes of precipitation and runoff occurred in study area, but the WSC increased significantly, according to water balance equation, the changes of runoff and water storage were subtracted from changes of precipitation, and the result showed that changes of evaporation is minus which means the evaporation decreased in the Three-River Source Region during 2003–2010.


2015 ◽  
Vol 16 (3) ◽  
pp. 1102-1108 ◽  
Author(s):  
Eunjin Han ◽  
Wade T. Crow ◽  
Christopher R. Hain ◽  
Martha C. Anderson

Abstract Accurately measuring interannual variability in terrestrial evapotranspiration ET is a major challenge for efforts to detect trends in the terrestrial hydrologic cycle. Based on comparisons with annual values of terrestrial evapotranspiration derived from a terrestrial water balance analysis, past research has cast doubt on the ability of existing products to accurately capture variability. Using a variety of estimates, this analysis reexamines this conclusion and finds that estimates of variations obtained from a land surface model are more strongly correlated with independently acquired from thermal infrared remote sensing than derived from water balance considerations. This tendency is attributed to significant interannual variations in terrestrial water storage neglected by the water balance approach. Overall, results demonstrate the need to reassess perceptions concerning the skill of estimates derived from land surface models and show the value of accurate remotely sensed ET products for the validation of interannual ET.


2014 ◽  
Vol 11 (3) ◽  
pp. 2933-2965 ◽  
Author(s):  
P. K. Weiskel ◽  
D. M. Wolock ◽  
P. J. Zarriello ◽  
R. M. Vogel ◽  
S. B. Levin ◽  
...  

Abstract. Runoff-based indicators of terrestrial water availability are appropriate for humid regions, but have tended to limit our basic hydrologic understanding of drylands – the dry-sub-humid, semi-arid, and arid regions which presently cover nearly half of the global land surface. In response, we introduce an indicator framework that gives equal weight to humid and dryland regions, accounting fully for both vertical (precipitation + evapotranspiration) and horizontal (groundwater + surface-water) components of the hydrologic cycle in any given location – as well as fluxes into and out of landscape storage. We apply the framework to a diverse hydroclimatic region (the conterminous USA), using a distributed water-balance model consisting of 53 400 networked landscape hydrologic units. Our model simulations indicate that about 21% of the conterminous USA either generated no runoff or consumed runoff from upgradient sources on a mean-annual basis during the 20th century. Vertical fluxes exceeded horizontal fluxes across 76% of the conterminous area. Long-term average total water availability (TWA) during the 20th century, defined here as the total influx to a landscape hydrologic unit from precipitation, groundwater, and surface water, varied spatially by about 400 000-fold, a range of variation ~100 times larger than that for mean-annual runoff across the same area. The framework includes, but is not limited to classical, runoff-based approaches to water-resource assessment. It also incorporates and re-interprets the green-blue water perspective now gaining international acceptance. Implications of the new framework for hydrologic assessment and classification are explored.


2021 ◽  
Vol 13 (16) ◽  
pp. 3304
Author(s):  
Qin Li ◽  
Xiuguo Liu ◽  
Yulong Zhong ◽  
Mengmeng Wang ◽  
Shuang Zhu

Terrestrial water storage changes (TWSCs) retrieved from the Gravity Recovery and Climate Experiment (GRACE) satellite mission have been extensively evaluated in previous studies over large basin scales. However, monitoring the TWSC at small basin scales is still poorly understood. This study presented a new method for calculating TWSCs at the small basin scales based on the water balance equation, using hydrometeorological and multi-source data. First, the basin was divided into several sub-basins through the slope runoff simulation algorithm. Secondly, we simulated the evapotranspiration (ET) and outbound runoff of each sub-basin using the PML_V2 and SWAT. Lastly, through the water balance equation, the TWSC of each sub-basin was obtained. Based on the estimated results, we analyzed the temporal and spatial variations in precipitation, ET, outbound runoff, and TWSC in the Ganjiang River Basin (GRB) from 2002 to 2018. The results showed that by comparing with GRACE products, in situ groundwater levels data, and soil moisture storage, the TWSC calculated by this study is in good agreement with these three data. During the study period, the spatial and temporal variations in precipitation and runoff in the GRB were similar, with a minimum in 2011 and maximum in 2016. The annual ET changed gently, while the TWSC fluctuated greatly. The findings of this study could provide some new information for improving the estimate of the TWSC at small basin scales.


Sign in / Sign up

Export Citation Format

Share Document