Effects of CH3Cl Gas on Heteroepitaxial Growth of β-SiC on Si(111) by Chemical Vapor Deposition

Author(s):  
K. Ikoma ◽  
M. Yamanaka ◽  
H. Yamaguchi ◽  
Y. Shichi
1988 ◽  
Vol 116 ◽  
Author(s):  
R.A. Rudder ◽  
S.V. Hattangady ◽  
D.J. Vitkavage ◽  
R.J. Markunas

Heteroepitaxial growth of Ge on Si(100) has been accomplished using remote plasma enhanced chemical vapor deposition at 300*#x00B0;C. Reconstructed surfaces with diffraction patterns showing non-uniform intensity variations along the lengths of the integral order streaks are observed during the first 100 Å of deposit. This observation of an atomically rough surface during the initial stages of growth is an indication of three-dimensional growth. As the epitaxial growth proceeds, the diffraction patterns become uniform with extensive streaking on both the integral and fractional order streaks. Subsequent growth, therefore, takes place in a layer-by-layer, two-dimensional mode. X-ray photoelectron spectroscopy of the early nucleation stages, less than 80 Å, show that there is uniform coverage with no evidence of island formation.


1994 ◽  
Vol 363 ◽  
Author(s):  
Yan Chen ◽  
Jun Mei ◽  
Qijin Chen ◽  
Zhangda Lin

AbstractDiamond have been deposited rapidly under low pressures (<0.1 Torr) via hot filament chemical vapor deposition (HFCVD) on either scratched or mirror-smooth single crystalline silicon and titanium with nucleation densities of 109–1011/cm2. The nucleation density increases with the pressure decreases. Hydrogen and methane were used as the gaseous source. Raman spectroscopy and scanning electron microscopy(SEM) were used to analyze the obtained films. This result breaks through the limit that diamond film can only be synthesized above 10 Torr, showing a promising prospect that, as is essential for heteroepitaxial growth of monocrystalline diamond films, diamond film can be easily nucleated on unscratched substrate via Hot Filament CVD.


2007 ◽  
Vol 22 (5) ◽  
pp. 1275-1280 ◽  
Author(s):  
Y. Morikawa ◽  
M. Hirai ◽  
A. Ohi ◽  
M. Kusaka ◽  
M. Iwami

We have studied the heteroepitaxial growth of 3C–SiC film on an Si(100) substrate by plasma chemical vapor deposition using monomethylsilane, a single-molecule gas containing both Si and C atoms. We have tried to introduce an interval process, in which we decrease the substrate temperature for a few minutes at a suitable stage of film growth. It was expected that, during the interval process, stabilization such as desorption of nonreacted precursors and lateral diffusion of species produced at the initial stage of film growth would occur. From the results, it appears that the interval process using a substrate temperature of 800 °C effectively suppresses polycrystallization of 3C–SiC growth on the Si(100) surface


2015 ◽  
Vol 821-823 ◽  
pp. 193-196 ◽  
Author(s):  
Hans von Känel ◽  
Leo Miglio ◽  
Danilo Crippa ◽  
Thomas Kreiliger ◽  
Marco Mauceri ◽  
...  

The heteroepitaxial growth of 3C-SiC on Si (001) and Si (111) substrates deeply patterned at a micron scale by low-pressure chemical vapor deposition is shown to lead to space-filling isolated structures resulting from a mechanism of self-limitation of lateral expansion. Stacking fault densities and wafer bowing may be drastically reduced for optimized pattern geometries.


CrystEngComm ◽  
2018 ◽  
Vol 20 (40) ◽  
pp. 6236-6242 ◽  
Author(s):  
Y. Arata ◽  
H. Nishinaka ◽  
D. Tahara ◽  
M. Yoshimoto

In this study, single-phase ε-gallium oxide (Ga2O3) thin films were heteroepitaxially grown on c-plane sapphire substrates.


Nano Letters ◽  
2008 ◽  
Vol 8 (11) ◽  
pp. 3755-3760 ◽  
Author(s):  
Xin-Yu Bao ◽  
Cesare Soci ◽  
Darija Susac ◽  
Jon Bratvold ◽  
David P. R. Aplin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document