Preparation and Properties of Polycrystalline Silicon Carbide Films Produced by Plasma Enhanced Chemical Vapor Deposition, and Their Applications

Author(s):  
Y. Onuma ◽  
F. Nagaune ◽  
K. Kamimura
1993 ◽  
Vol 8 (9) ◽  
pp. 2417-2418 ◽  
Author(s):  
Brian W. Sheldon ◽  
Theodore M. Besmann ◽  
Karren L. More ◽  
Thomas S. Moss

Polycrystalline silicon carbide was deposited from methyltrichlorosilane in cold-walled and hot-walled reactors, on (100) SiC surface layers that were formed on (100) Si wafers. The initial stages of the process were studied by electron microscopy after relatively short deposition times. Submicron surface features nucleated with a specific crystallographic orientation with respect to the substrate, where {111} planes in the β–SiC substrate coincided with {0001} planes in the α–SiC features. These α–SiC features occurred only at twins on {111} planes of the β–SiC substrate. This demonstrates that nucleation under these conditions is controlled by defects in the substrate. Surface contamination and the reactor configuration also had substantial effects on nucleation.


1993 ◽  
Vol 8 (5) ◽  
pp. 1086-1092 ◽  
Author(s):  
Brian W. Sheldon ◽  
Theodore M. Besmann ◽  
Karren L. More ◽  
Thomas S. Moss

Polycrystalline silicon carbide was deposited from methyltrichlorosilane in cold-walled and hot-walled reactors, on (100) SiC surface layers that were formed on (100) Si wafers. The initial stages of the process were studied by electron microscopy after relatively short deposition times. Submicron surface features nucleated with a specific crystallographic orientation with respect to the substrate, where h111j planes in th—SiC substrate coincided with h0001j planes in the a–SiC features. These a–SiC features occurred only at twins on h111j planes of the b–SiC substrate. This demonstrates that nucleation under these conditions is controlled by defects in the substrate. Surface contamination and the reactor configuration also had substantial effects on nucleation.


1993 ◽  
Vol 8 (9) ◽  
pp. 2416-2416
Author(s):  
Brian W. Sheldon ◽  
Theodore M. Besmann ◽  
Karren L. More ◽  
Thomas S. Moss

“Epitaxical nucleation of polycrystalline silicon carbide during chemical vapor deposition” [J. Mater. Res. 8, 1086 (1993)]


1999 ◽  
Vol 606 ◽  
Author(s):  
James V. Marzik ◽  
William J. Croft

AbstractPolycrystalline, theoretically dense silicon carbide was deposited onto graphite substrates via the reductive pyrolysis of methyltrichlorosilane in a hot-walled chemical vapor deposition (CVD) chamber. The resulting product can be considered a bulk material with deposit thicknesses in the range of 4 to 8 millimeters. The material was characterized using powder x-ray diffraction and Laue back-reflection techniques. Under the deposition conditions investigated in this study, the crystallographic orientation varied as a function of distance from the substrate. The material exhibited a high degree of randomness in proximity to the substrate, and progressively showed a higher degree of preferred crystallographic orientation as the deposit progressed. This phenomenon is correlated with the microstructure of the material as well as such mechanical properties as hardness and fracture toughness.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 237
Author(s):  
M. Abul Hossion ◽  
B. M. Arora

Boron-doped polycrystalline silicon film was synthesized using hot wire chemical vapor deposition technique for possible application in photonics devices. To investigate the effect of substrate, we considered Si/SiO2, glass/ITO/TiO2, Al2O3, and nickel tungsten alloy strip for the growth of polycrystalline silicon films. Scanning electron microscopy, optical reflectance, optical transmittance, X-ray diffraction, and I-V measurements were used to characterize the silicon films. The resistivity of the film was 1.3 × 10−2 Ω-cm for the polycrystalline silicon film, which was suitable for using as a window layer in a solar cell. These films have potential uses in making photodiode and photosensing devices.


1999 ◽  
Vol 61-62 ◽  
pp. 172-175 ◽  
Author(s):  
A.N. Vorob’ev ◽  
Yu.E. Egorov ◽  
Yu.N. Makarov ◽  
A.I. Zhmakin ◽  
A.O. Galyukov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document