Sphingosine Kinase/Sphingosine 1-Phosphate Signaling in Cancer Therapeutics and Drug Resistance

Author(s):  
Shanmugam Panneer Selvam ◽  
Besim Ogretmen
Blood ◽  
2011 ◽  
Vol 117 (22) ◽  
pp. 5941-5952 ◽  
Author(s):  
Arelis Salas ◽  
Suriyan Ponnusamy ◽  
Can E. Senkal ◽  
Marisa Meyers-Needham ◽  
Shanmugam Panneer Selvam ◽  
...  

Abstract The mechanisms by which sphingosine kinase-1 (SK-1)/sphingosine 1-phosphate (S1P) activation contributes to imatinib resistance in chronic myeloid leukemia (CML) are unknown. We show herein that increased SK-1/S1P enhances Bcr-Abl1 protein stability, through inhibition of its proteasomal degradation in imatinib-resistant K562/IMA-3 and LAMA-4/IMA human CML cells. In fact, Bcr-Abl1 stability was enhanced by ectopic SK-1 expression. Conversely, siRNA-mediated SK-1 knockdown in K562/IMA-3 cells, or its genetic loss in SK-1−/− MEFs, significantly reduced Bcr-Abl1 stability. Regulation of Bcr-Abl1 by SK-1/S1P was dependent on S1P receptor 2 (S1P2) signaling, which prevented Bcr-Abl1 dephosphorylation, and degradation via inhibition of PP2A. Molecular or pharmacologic interference with SK-1/S1P2 restored PP2A-dependent Bcr-Abl1 dephosphorylation, and enhanced imatinib- or nilotinib-induced growth inhibition in primary CD34+ mononuclear cells obtained from chronic phase and blast crisis CML patients, K562/IMA-3 or LAMA4/IMA cells, and 32Dcl3 murine progenitor cells, expressing the wild-type or mutant (Y253H or T315I) Bcr-Abl1 in situ. Accordingly, impaired SK-1/S1P2 signaling enhanced the growth-inhibitory effects of nilotinib against 32D/T315I-Bcr-Abl1–derived mouse allografts. Since SK-1/S1P/S1P2 signaling regulates Bcr-Abl1 stability via modulation of PP2A, inhibition of SK-1/S1P2 axis represents a novel approach to target wild-type- or mutant-Bcr–Abl1 thereby overcoming drug resistance.


Author(s):  
Bruno Jaime Santacreu ◽  
Daniela Judith Romero ◽  
Lucila Gisele Pescio ◽  
Estefanía Tarallo ◽  
Norma Beatriz Sterin-Speziale ◽  
...  

2004 ◽  
Vol 279 (50) ◽  
pp. 52487-52492 ◽  
Author(s):  
Maria L. Allende ◽  
Teiji Sasaki ◽  
Hiromichi Kawai ◽  
Ana Olivera ◽  
Yide Mi ◽  
...  

Sphingosine-1-phosphate (S1P), a lipid signaling molecule that regulates many cellular functions, is synthesized from sphingosine and ATP by the action of sphingosine kinase. Two such kinases have been identified, SPHK1 and SPHK2. To begin to investigate the physiological functions of sphingosine kinase and S1P signaling, we generated mice deficient in SPHK1.Sphk1null mice were viable, fertile, and without any obvious abnormalities. Total SPHK activity in mostSphk1-/-tissues was substantially, but not completely, reduced indicating the presence of multiple sphingosine kinases. S1P levels in most tissues from theSphk1-/- mice were not markedly decreased. In serum, however, there was a significant decrease in the S1P level. Although S1P signaling regulates lymphocyte trafficking, lymphocyte distribution was unaffected in lymphoid organs ofSphk1-/- mice. The immunosuppressant FTY720 was phosphorylated and elicited lymphopenia in theSphk1null mice showing that SPHK1 is not required for the functional activation of this sphingosine analogue prodrug. The results with theseSphk1null mice reveal that some key physiologic processes that require S1P receptor signaling, such as vascular development and proper lymphocyte distribution, can occur in the absence of SPHK1.


Endocrinology ◽  
2009 ◽  
Vol 150 (11) ◽  
pp. 5125-5134 ◽  
Author(s):  
Dan Gratschev ◽  
Christoffer Löf ◽  
Jari Heikkilä ◽  
Anders Björkbom ◽  
Pramod Sukumaran ◽  
...  

Calcium entry is one of the main regulators of intracellular signaling. Here, we have described the importance of sphingosine, sphingosine kinase 1 (SK1), and sphingosine 1-phosphate (S1P) in regulating calcium entry in thyroid FRTL-5 cells. In cells incubated with the phosphatase inhibitor calyculin A, which evokes calcium entry without mobilizing sequestered intracellular calcium, sphingosine inhibited calcium entry in a concentration-dependent manner. Furthermore, inhibiting SK1 or the ATP-binding cassette ABCC1 multidrug transporter attenuated calcium entry. The addition of exogenous S1P restored calcium entry. Neither sphingosine nor inhibition of SK1 attenuated thapsigargin-evoked calcium entry. Blocking S1P receptor 2 or phospholipase C attenuated calcium entry, whereas blocking S1P receptor 3 did not. Overexpression of wild-type SK1, but not SK2, enhanced calyculin-evoked calcium entry compared with mock-transfected cells, whereas calcium entry was decreased in cells transfected with the dominant-negative G82D SK1 mutant. Exogenous S1P restored calcium entry in G82D cells. Our results suggest that the calcium entry pathway is blocked by sphingosine and that activation of SK1 and the production of S1P, through an autocrine mechanism, facilitate calcium entry through activation of S1P receptor 2. This is a novel mechanism by which the sphingosine-S1P rheostat regulates cellular calcium homeostasis.


2007 ◽  
Vol 36 (6) ◽  
pp. 757-762 ◽  
Author(s):  
Fiorentina Roviezzo ◽  
Annarita Di Lorenzo ◽  
Mariarosaria Bucci ◽  
Vincenzo Brancaleone ◽  
Valentina Vellecco ◽  
...  

Author(s):  
Jiujiang Liao ◽  
Yangxi Zheng ◽  
Mingyu Hu ◽  
Ping Xu ◽  
Li Lin ◽  
...  

Incomplete spiral artery remodeling, caused by impaired extravillous trophoblast invasion, is a fundamental pathogenic process associated with malplacentation and the development of preeclampsia. Nevertheless, the mechanisms controlling this regulation of trophoblast invasion are largely unknown. We report that sphingosine-1-phosphate synthesis and expression is abundant in healthy trophoblast, whereas in pregnancies complicated by preeclampsia the placentae are associated with reduced sphingosine-1-phosphate and lower SPHK1 (sphingosine kinase 1) expression and activity. In vivo inhibition of sphingosine kinase 1 activity during placentation in pregnant mice led to decreased placental sphingosine-1-phosphate production and defective placentation, resulting in a preeclampsia phenotype. Moreover, sphingosine-1-phosphate increased HTR8/SVneo (immortalized trophoblast cells) cell invasion in a Hippo-signaling–dependent transcriptional coactivator YAP (Yes-associated protein) dependent manner, which is activated by S1PR2 (sphingosine-1-phosphate receptor-2) and downstream RhoA/ROCK induced actin polymerization. Mutation-based YAP-5SA demonstrated that sphingosine-1-phosphate activation of YAP could be either dependent or independent of Hippo signaling. Together, these findings suggest a novel pathogenic pathway of preeclampsia via disrupted sphingosine-1-phosphate metabolism and signaling-induced, interrupted actin dynamics and YAP deactivation; this may lead to potential novel intervention targets for the prevention and management of preeclampsia.


2006 ◽  
Vol 20 (4) ◽  
Author(s):  
Irina Gorshkova ◽  
Evgeny Berdyshev ◽  
Bahman Saatian ◽  
Yutong Zhao ◽  
Srikanth Pendyala ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Parnpen Viriyavejakul ◽  
Chuchard Punsawad

Pulmonary edema (PE) is a major cause of pulmonary manifestations of severe Plasmodium falciparum malaria and is usually associated with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). The sphingosine kinase-1 (SphK-1)/sphingosine-1-phosphate receptor-3 (S1PR-3) pathway has recently been reported to affect the pathogenesis of lung injury, but the expression of these proteins in the lungs of severe P. falciparum malaria patients has not been investigated. The cellular expression of SphK-1 and S1PR-3 in lung tissues from autopsied patients with P. falciparum malaria was investigated using immunohistochemistry (IHC). Lung tissues from patients who died of severe P. falciparum malaria were classified into two groups based on histopathological findings: those with PE (18 patients) and those without PE (non-PE, 19 patients). Ten samples of normal lung tissues were used as the control group. The protein expression levels of SphK-1 and S1PR-3 were significantly upregulated in endothelial cells (ECs), alveolar epithelial cells, and alveolar macrophages (AMs) in the lungs of severe P. falciparum malaria patients with PE compared to those in the non-PE and control groups (all p<0.001). In addition, the SphK-1 and S1PR-3 expression levels were significantly positively correlated in pulmonary ECs (rs=0.922, p<0.001), alveolar epithelial cells (rs=0.995, p<0.001), and AMs (rs=0.969, p<0.001). In conclusion, both the SphK-1 and S1PR-3 proteins were overexpressed in the lung tissues of severe P. falciparum malaria patients with PE, suggesting that SphK-1 and S1PR-3 mediate the pathogenesis of PE in severe malaria. Targeting the regulation of SphK-1 and/or S1PR-3 may be an approach to treat pulmonary complications in severe P. falciparum patients.


Sign in / Sign up

Export Citation Format

Share Document