scholarly journals Modelling Gravitational Instabilities: Slab Break-off and Rayleigh-Taylor Diapirism

2008 ◽  
pp. 1491-1510
Author(s):  
Sergio Zlotnik ◽  
Manel Fernández ◽  
Pedro Díez ◽  
Jaume Vergés
Author(s):  
Kosuke Fujii ◽  
Norikazu Mizuno ◽  
J R Dawson ◽  
Tsuyoshi Inoue ◽  
Kazufumi Torii ◽  
...  

Abstract We investigate the H i envelope of the young, massive GMCs in the star-forming regions N48 and N49, which are located within the high column density H i ridge between two kpc-scale supergiant shells, LMC 4 and LMC 5. New long-baseline H i 21 cm line observations with the Australia Telescope Compact Array (ATCA) were combined with archival shorter baseline data and single dish data from the Parkes telescope, for a final synthesized beam size of 24.75″ by 20.48″, which corresponds to a spatial resolution of ∼ 6 pc in the LMC. It is newly revealed that the H i gas is highly filamentary, and that the molecular clumps are distributed along filamentary H i features. In total 39 filamentary features are identified and their typical width is ∼ 21 (8–49) [pc]. We propose a scenario in which the GMCs were formed via gravitational instabilities in atomic gas which was initially accumulated by the two shells and then further compressed by their collision. This suggests that GMC formation involves the filamentary nature of the atomic medium.


2005 ◽  
Vol 636 (2) ◽  
pp. L149-L152 ◽  
Author(s):  
Kai Cai ◽  
Richard H. Durisen ◽  
Scott Michael ◽  
Aaron C. Boley ◽  
Annie C. Mejía ◽  
...  

2006 ◽  
Vol 2 (S235) ◽  
pp. 143-143
Author(s):  
Eduard Vorobyov ◽  
Christian Theis

The majority of normal disk galaxies are characterized by non-axisymmetric structures like spirals or bars. These structural elements have been widely discussed in the literature as a result of gravitational instabilities which are connected to growing density waves or global instabilities of disks. A first insight into the properties of galactic discs was provided by linear stability analysis. However, a disadvantage of linear stability analysis remained its restriction to small perturbations, both in amplitude and wavelength. Thus, numerical simulations, especially hydrodynamical and stellar-hydrodynamical simulations became a primary tool for the analysis of galactic evolution.


Author(s):  
O. Lomax ◽  
A. P. Whitworth ◽  
D. A. Hubber

AbstractDisc fragmentation provides an important mechanism for producing low-mass stars in prestellar cores. Here, we describe smoothed particle hydrodynamics simulations which show how populations of prestellar cores evolve into stars. We find the observed masses and multiplicities of stars can be recovered under certain conditions.First, protostellar feedback from a star must be episodic. The continuous accretion of disc material on to a central protostar results in local temperatures which are too high for disc fragmentation. If, however, the accretion occurs in intense outbursts, separated by a downtime of ~ 104yr, gravitational instabilities can develop and the disc can fragment.Second, a significant amount of the cores’ internal kinetic energy should be in solenoidal turbulent modes. Cores with less than a third of their kinetic energy in solenoidal modes have insufficient angular momentum to form fragmenting discs. In the absence of discs, cores can fragment but results in a top-heavy distribution of masses with very few low-mass objects.


2021 ◽  
pp. 1-32
Author(s):  
Mikhail Semenovich Legkostupov

The fundamental principles of the protoplanetary ring model – the model of formation of planetary systems of stars, which is based on the origin and development of large-scale gravitational instabilities (protoplanetary rings) – are extended to the formation of regular planetary satellites. Based on these principles, a complete model of the formation of planetary systems, including their satellites, (model of gas and dust rings) for solar-type stars is proposed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Allan Fries ◽  
Jonathan Lemus ◽  
Paul A. Jarvis ◽  
Amanda B. Clarke ◽  
Jeremy C. Phillips ◽  
...  

Settling-driven gravitational instabilities observed at the base of volcanic ash clouds have the potential to play a substantial role in volcanic ash sedimentation. They originate from a narrow, gravitationally unstable region called a Particle Boundary Layer (PBL) that forms at the lower cloud-atmosphere interface and generates downward-moving ash fingers that enhance the ash sedimentation rate. We use scaled laboratory experiments in combination with particle imaging and Planar Laser Induced Fluorescence (PLIF) techniques to investigate the effect of particle concentration on PBL and finger formation. Results show that, as particles settle across an initial density interface and are incorporated within the dense underlying fluid, the PBL grows below the interface as a narrow region of small excess density. This detaches upon reaching a critical thickness, that scales with (ν2/g′)1/3, where ν is the kinematic viscosity and g′ is the reduced gravity of the PBL, leading to the formation of fingers. During this process, the fluid above and below the interface remains poorly mixed, with only small quantities of the upper fluid phase being injected through fingers. In addition, our measurements confirm previous findings over a wider set of initial conditions that show that both the number of fingers and their velocity increase with particle concentration. We also quantify how the vertical particle mass flux below the particle suspension evolves with time and with the particle concentration. Finally, we identify a dimensionless number that depends on the measurable cloud mass-loading and thickness, which can be used to assess the potential for settling-driven gravitational instabilities to form. Our results suggest that fingers from volcanic clouds characterised by high ash concentrations not only are more likely to develop, but they are also expected to form more quickly and propagate at higher velocities than fingers associated with ash-poor clouds.


1996 ◽  
Vol 171 ◽  
pp. 405-405 ◽  
Author(s):  
S. von Linden ◽  
J. Heidt ◽  
H.P. Reuter ◽  
R. Wielebinski

The large-scale dynamics and evolution of disk galaxies is controlled by the angular-momentum transport provided by non-axisymmetric perturbances through their gravity torques. To continuously maintain such gravitational instabilities, the presence of the gas component and its dissipative character are essential.


2020 ◽  
Vol 58 (1) ◽  
pp. 661-725 ◽  
Author(s):  
Natascha M. Förster Schreiber ◽  
Stijn Wuyts

Ever deeper and wider look-back surveys have led to a fairly robust outline of the cosmic star-formation history, which culminated around [Formula: see text]; this period is often nicknamed “cosmic noon.” Our knowledge about star-forming galaxies at these epochs has dramatically advanced from increasingly complete population censuses and detailed views of individual galaxies. We highlight some of the key observational insights that influenced our current understanding of galaxy evolution in the equilibrium growth picture: ▪  Scaling relations between galaxy properties are fairly well established among massive galaxies at least out to [Formula: see text], pointing to regulating mechanisms already acting on galaxy growth. ▪  Resolved views reveal that gravitational instabilities and efficient secular processes within the gas- and baryon-rich galaxies at [Formula: see text] play an important role in the early buildup of galactic structure. ▪  Ever more sensitive observations of kinematics at [Formula: see text] are probing the baryon and dark matter budget on galactic scales and the links between star-forming galaxies and their likely descendants. ▪  Toward higher masses, massive bulges, dense cores, and powerful AGNs and AGN-driven outflows are more prevalent and likely play a role in quenching star formation. We outline emerging questions and exciting prospects for the next decade with upcoming instrumentation, including the James Webb Space Telescope and the next generation of extremely large telescopes.


2019 ◽  
Vol 632 ◽  
pp. A50 ◽  
Author(s):  
A. Ahmadi ◽  
R. Kuiper ◽  
H. Beuther

Context. In the disc-mediated accretion scenario for the formation of the most massive stars, high densities and high accretion rates could induce gravitational instabilities in the disc, forcing it to fragment and produce companion objects. Aims. We investigate the effects of inclination and spatial resolution on the observable kinematics and stability of discs in high-mass star formation. Methods. We studied a high-resolution 3D radiation-hydrodynamic simulation that leads to the fragmentation of a massive disc. Using RADMC-3D we produced 1.3 mm continuum and CH3CN line cubes at different inclinations. The model was set to different distances, and synthetic observations were created for ALMA at ~80 mas resolution and NOEMA at ~0.4′′. Results. The synthetic ALMA observations resolve all fragments and their kinematics well. The synthetic NOEMA observations at 800 pc with linear resolution of ~300 au are able to resolve the fragments, while at 2000 pc with linear resolution of ~800 au only a single structure slightly elongated towards the brightest fragment is observed. The position–velocity (PV) plots show the differential rotation of material best in the edge-on views. A discontinuity is seen at a radius of ~250 au, corresponding to the position of the centrifugal barrier. As the observations become less resolved, the inner high-velocity components of the disc become blended with the envelope and the PV plots resemble rigid-body-like rotation. Protostellar mass estimates from PV plots of poorly resolved observations are therefore overestimated. We fit the emission of CH3CN (12K−11K) lines and produce maps of gas temperature with values in the range of 100–300 K. Studying the Toomre stability of the discs, we find low Q values below the critical value for stability against gravitational collapse at the positions of the fragments and in the arms connecting the fragments for the resolved observations. For the poorly resolved observations we find low Q values in the outskirts of the disc. Therefore, although we could not resolve any of the fragments, we are able to predict that the disc is unstable and fragmenting. This conclusion is valid regardless of our knowledge about the inclination of the disc. Conclusions. These synthetic observations reveal the potential and limitations of studying discs in high-mass star formation with current (millimetre) interferometers. While the extremely high spatial resolution of ALMA reveals objects in extraordinary detail, rotational structures and instabilities within accretion discs can also be identified in poorly resolved observations.


Sign in / Sign up

Export Citation Format

Share Document