Differential Drive Signal Generation for Wheel-Based Snake Robot Executing Lateral Undulation

Author(s):  
Anubhuti Saha ◽  
R. P. Chatterjee
Author(s):  
Yash Dinesh Shethwala ◽  
Ravi Pravinbhai Patel ◽  
Darshankumar Rajendrakumar Shah ◽  
Saurin M. Sheth

Disaster is a sudden accident or a natural calamity that causes great damage or loss of life and property. In any disastrous conditions, a lot of manpower is wasted and still unable to save some lives. A biomorphic hyper-redundant snake-like robot may help in such situations. Its excellent property of getting into small spaces and ability to traverse along any surface can be very helpful in search and rescue operations. These robots can help to locate humans in a disaster and provide precise information about its condition to rescuers. It can also be used in other domains like military, underwater, aerospace, and nuclear. In this research, the mechanical modelling and simulation of snake robot body have been carried out. Different speeds have been achieved on various surfaces where the snake robot has to traverse. An algorithm is proposed for human detection based on a YOLO algorithm. PCB design for the power supply is carried out and two types of gait motion (lateral undulation and side winding) have been achieved by the snake robot.


Author(s):  
Yunjie Miao ◽  
Feng Gao ◽  
Yong Zhang

This paper introduces a new snake robot with binary actuators and mainly focuses on the simulations of various snake gaits. Three categories of fitting algorithms are proposed. They are 1) Fitting Algorithm of One Module; 2) Position-Fitting Algorithm of Multiple Modules; 3) Configuration-Fitting Algorithm of Multiple Modules. All the fitting algorithms and their fitting results are elaborated in simulations of lateral undulation, one of the most widely used snake gaits. As the best fitting algorithm for lateral undulation, Configuration-Fitting Algorithm of Four Modules is also applied to a snake robot of different dimensions to demonstrate that it is a universal gait fitting algorithm for all kinds of snake robots with binary actuators.


Author(s):  
Yesim Baysal ◽  
Ismail Altas

This paper deals with energy efficient locomotion of a wheel-less snake robot. This is very crucial for potential applications of untethered snake robots. The optimum gait parameters for the energy efficient locomotion of the snake robot are obtained with two different multi-objective algorithms based on symbiotic organism search algorithm by considering both minimizing the average power consumption and maximizing the forward velocity of the robot. This paper also investigates the energy efficient locomotion of the snake robot under different environment conditions. The obtained results demonstrate that both proposed methods achieve satisfying stable results regarding power consumption reduction with optimal forward velocity for lateral undulation motion. However, it is seen that fast non-dominated sorting multi-objective symbiotic organism search algorithm provides advantage on obtaining a uniformly distributed solution set with a good diversity only in a single run. This paper is important in terms of presenting useful results for developing efficient motion and environmental adaptability of the snake robot.


2020 ◽  
Vol 5 (2) ◽  
pp. 1728-1733
Author(s):  
Callie Branyan ◽  
Ross L. Hatton ◽  
Yigit Menguc

2020 ◽  
Vol 7 (2) ◽  
pp. 191192 ◽  
Author(s):  
Qiyuan Fu ◽  
Chen Li

Snakes can move through almost any terrain. Although their locomotion on flat surfaces using planar gaits is inherently stable, when snakes deform their body out of plane to traverse complex terrain, maintaining stability becomes a challenge. On trees and desert dunes, snakes grip branches or brace against depressed sand for stability. However, how they stably surmount obstacles like boulders too large and smooth to gain such ‘anchor points’ is less understood. Similarly, snake robots are challenged to stably traverse large, smooth obstacles for search and rescue and building inspection. Our recent study discovered that snakes combine body lateral undulation and cantilevering to stably traverse large steps. Here, we developed a snake robot with this gait and snake-like anisotropic friction and used it as a physical model to understand stability principles. The robot traversed steps as high as a third of its body length rapidly and stably. However, on higher steps, it was more likely to fail due to more frequent rolling and flipping over, which was absent in the snake with a compliant body. Adding body compliance reduced the robot's roll instability by statistically improving surface contact, without reducing speed. Besides advancing understanding of snake locomotion, our robot achieved high traversal speed surpassing most previous snake robots and approaching snakes, while maintaining high traversal probability.


Robotica ◽  
2013 ◽  
Vol 31 (7) ◽  
pp. 1005-1036 ◽  
Author(s):  
Pål Liljebäck ◽  
Kristin Y. Pettersen ◽  
Øyvind Stavdahl ◽  
Jan Tommy Gravdahl

SUMMARYThis paper considers the lateral undulation motion of snake robots. The first contribution of the paper is a model of lateral undulation dynamics developed for control design and stability analysis purposes. The second contribution is an analysis of the simplified model that shows that any asymptotically stabilizing control law for the snake robot to an equilibrium point must be time varying. Furthermore, the analysis shows that a snake robot (with four links) is strongly accessible from almost any equilibrium point, except for certain singular configurations, and that the robot does not satisfy sufficient conditions for small-time local controllability. The third contribution is based on using averaging theory to prove that the average velocity of the robot during lateral undulation will converge exponentially fast to a steady-state velocity which is given analytically as a function of the gait pattern parameters. From the averaging analysis, we also derive a set of fundamental relationships between the gait parameters of lateral undulation and the resulting forward velocity of the snake robot. The paper presents simulation results and results from experiments with a physical snake robot that support the theoretical findings.


2015 ◽  
Vol 39 (2) ◽  
pp. 253-268 ◽  
Author(s):  
Rishad Irani ◽  
Robert Bauer ◽  
Lydia North ◽  
Michael Nicholson ◽  
David Nolan ◽  
...  

This paper describes the development of a biologically-inspired hyper-redundant wheeled snake robot and a corresponding computer simulator to study the effects that joint failures have on the resulting lateral undulation motion. Experiments and corresponding simulations were carried out to study the robotic snake’s lateral undulation gait as power to individual joints was turned off. The results showed that joint failures were most detrimental to the snake’s lateral undulation gait when they occurred in the front half of the snake, while joint failures occurring between the midpoint and tail of the robotic snake were found to be less critical and generally resulted in slight lateral drifts as the forward motion progressed. To help compensate for joint failures in the tail-half part of the robot, a bias term was added to the control algorithm. For the conditions tested in this research, the use of a bias term appeared to be effective at reducing the lateral drift.


Robotica ◽  
2011 ◽  
Vol 30 (7) ◽  
pp. 1079-1093 ◽  
Author(s):  
Farshad Barazandeh ◽  
Hossein Rahnamafard ◽  
Mehdi Rajabizadeh ◽  
Hossein Faraji

SUMMARYNature has always inspired engineers. This research tries to understand the contribution of snake anatomy in its locomotion from engineering point of view to be adopted in the design of snake robots. Rib design and muscular structure of snake robots will have a great impact on snake robot flexibility, weight, and actuators' torque. It will help to eliminate wheels in snake robots during serpentine locomotion. The result of this research shows that snakes can establish the required peg points on smooth surfaces by deflecting the body and ribs. The results are verified by both field observations and simulation.


Sign in / Sign up

Export Citation Format

Share Document