scholarly journals A fast non-dominated sorting multi-objective symbiotic organism search algorithm for energy efficient locomotion of snake robot

Author(s):  
Yesim Baysal ◽  
Ismail Altas

This paper deals with energy efficient locomotion of a wheel-less snake robot. This is very crucial for potential applications of untethered snake robots. The optimum gait parameters for the energy efficient locomotion of the snake robot are obtained with two different multi-objective algorithms based on symbiotic organism search algorithm by considering both minimizing the average power consumption and maximizing the forward velocity of the robot. This paper also investigates the energy efficient locomotion of the snake robot under different environment conditions. The obtained results demonstrate that both proposed methods achieve satisfying stable results regarding power consumption reduction with optimal forward velocity for lateral undulation motion. However, it is seen that fast non-dominated sorting multi-objective symbiotic organism search algorithm provides advantage on obtaining a uniformly distributed solution set with a good diversity only in a single run. This paper is important in terms of presenting useful results for developing efficient motion and environmental adaptability of the snake robot.

2020 ◽  
Vol 11 (1) ◽  
pp. 129
Author(s):  
Po-Yu Kuo ◽  
Ming-Hwa Sheu ◽  
Chang-Ming Tsai ◽  
Ming-Yan Tsai ◽  
Jin-Fa Lin

The conventional shift register consists of master and slave (MS) latches with each latch receiving the data from the previous stage. Therefore, the same data are stored in two latches separately. It leads to consuming more electrical power and occupying more layout area, which is not satisfactory to most circuit designers. To solve this issue, a novel cross-latch shift register (CLSR) scheme is proposed. It significantly reduced the number of transistors needed for a 256-bit shifter register by 48.33% as compared with the conventional MS latch design. To further verify its functions, this CLSR was implemented by using TSMC 40 nm CMOS process standard technology. The simulation results reveal that the proposed CLSR reduced the average power consumption by 36%, cut the leakage power by 60.53%, and eliminated layout area by 34.76% at a supply voltage of 0.9 V with an operating frequency of 250 MHz, as compared with the MS latch.


Author(s):  
Yogesh Shrivastava ◽  
Tarun Kumar Gupta

Ternary logic has been demonstrated as a superior contrasting option to binary logic. This paper presents a ternary subtractor circuit in which the input signal is converted into binary. The proposed design is implemented using Carbon Nanotube Field Effect Transistor (CNTFET), a forefront innovation. A correlation has been made in the proposed design on parameters like Power-Delay Product (PDP), Energy Delay Product (EDP), average power consumption, delay and static noise margin. Every one of these parameters is obtained by simulating the circuits on the HSPICE simulator. The proposed design indicates an improvement of 60.14%, 59.34%, 74.98% and 84.28%, respectively, in power consumption, delay, PDP and EDP individually in correlation with recent designs. The increased carbon nanotubes least affect the proposed subtractor design. In noise analysis, the proposed design outperformed all the existing designs.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 124 ◽  
Author(s):  
Jing Li ◽  
Yuyu Lin ◽  
Siyuan Ye ◽  
Kejun Wu ◽  
Ning Ning ◽  
...  

This paper describes a voltage controlled oscillator (VCO) based temperature sensor. The VCOs are composed of complementary metal–oxide–semiconductor (CMOS) thyristor with the advantage of low power consumption. The period of the VCO is temperature dependent and is function of the transistors’ threshold voltage and bias current. To obtain linear temperature characteristics, this paper constructed the period ratio between two different-type VCOs. The period ratio is independent of the temperature characteristics from current source, which makes the bias current generator simplified. The temperature sensor was designed in 130 nm CMOS process and it occupies an active area of 0.06 mm2. Based on the post-layout simulation results, after a first-order fit, the sensor achieves an inaccuracy of +0.37/−0.32 °C from 0 °C to 80 °C, while the average power consumption of the sensor at room temperature is 156 nW.


2012 ◽  
Vol 512-515 ◽  
pp. 1295-1298
Author(s):  
De Feng Ding ◽  
Shi Jie Liu ◽  
Chao Yu Zheng ◽  
Wen Sheng Yu ◽  
Wu Chen

A general air-source heat pump water heater originally designed to work with R134a was reconstructed as experimental rig for performance studies on systems using different refrigerants including R32, R134a and the mixture of R32/R134a which mass ratio is 1:5. Experimental results showed that the power consumption of the heat pump water heater charged individually with R32 would greatly exceed the system’s original pre-set maximum input power. When the leaving water temperature was increased from 18°C to 58°C, the average discharge temperature of the heat pump charged with R32/R134a mixture was 13.6% higher than that with R134a. The average power consumption of the heat pump with R134a was 253.5W less than that with R32/R134a mixture. However, the average COP (Coefficient of Performance) obtained by that with R32/R134a mixture was 0.83 higher than that with R134a.


Author(s):  
Pallepati Vasavi ◽  
G Raja Ramesh

As per need of recent applications, new research aspects related to scalability, heterogeneity, and power consumption have been arisen. These problems are supposed to be fixed for better utilization of MANETs. MANET nodes interact through multi-hop routing. AODV is a commonly used on-demand protocol for routing in MANETs. In the existing literature, AODV has been analyzed a number of times but heterogeneity of the nodes has not been addressed. Heterogeneity may be defined as diversity among the nodes in resources or capability. The environment is usually heterogeneous in case of constraint fluid dynamic environment of MANET. In this paper we are analyzing the routing performance as well as energy efficient behavior of AODV routing protocol in both homogeneous and heterogeneous MANETs (H-MANETs), using performance parameters like ratio of delivered packets, throughput, average delay, average power consumption, energy of alive nodes, etc. Heterogeneity has been introduced in terms of different initial energy for all the nodes, unlike the homogeneous scenario. The simulation work has been done using network simulator (NS-2). This work will be helpful to get insight of effects of heterogeneity on energy efficiency and other performance metrics of AODV.


Author(s):  
Stefan Balatchev

This paper presents the results of the testing of an oil-on-water leak detection technology for isolated locations without power or communications infrastructure. A special attention was paid to the ability of the sensors to detect hydrocarbon leaks under freezing conditions, with thick ice formed on the surface of the water. A viable solution for remote locations and large water crossings needs ultra low-power solution and/or cyclic operation. The technology evaluated was a fully passive impedance polymer-absorption sensor (PAS) featuring “zero-power” consumption. This technology also provides an additional advantage, “an event memory”, and is perfectly suitable for cyclic operation for detecting moving oil stains. In October 2017 three polymer-absorption sensors of different lengths were placed in outdoor location in Ontario, Canada for long-term testing of reliability in freezing conditions. The sensors were connected to cellular modem for generating alerts. Another battery of three sensors of same lengths was installed in outdoor testing facility near Ottawa, ON, Canada and connected to real-time data acquisition equipment. A preliminary series of leak tests performed in October/November 2017 confirmed the initial assumptions of excellent sensitivity of the hydrocarbon oil-on-water detection based on polymer absorption. The average power consumption of the sensor excitation and its measurement frontend during the first two months of testing were found to be extremely low, a fraction of the power needed for the wireless modem itself. The leak tests were extended to oil under ice detection performed with 5 North-American crude oils and with 3 refined products from Mid-December 2017 to Mid-February 2018. The sensitivity, the sensor excitation/measurement front end power consumption, and the reliability of the sensors were assessed at freezing temperatures, with thickness of the ice comprised between 80 and 100 mm. The paper also presents the availability of stand-alone communication equipment suitable for integrating oil-on-water sensors, as well the energy harvesting or energy storage technologies for different climatic conditions.


Sign in / Sign up

Export Citation Format

Share Document