A New Generation of 3D Composite Materials: Advantage and Disadvantage

2009 ◽  
pp. 473-483
Author(s):  
Z. Aboura ◽  
K. Khellil ◽  
M. L. Benzeggagh ◽  
A. Bouden ◽  
R. Ayad
Author(s):  
M. Chomiak

Purpose: of this paper is to develop a new generation of polymer composite materials that would ensure the use of residual and serious environmental problems of polyester-glass laminate waste. Design/methodology/approach: The glass reinforced polyester waste was ground and added to produce new composites. Thermoplastic - high impact polystyrene was selected for the composite matrix. Composites containing 10, 20, 30% by weight of the filler of polyester-glass laminate powder were made. The process of extrusion and subsequent injection was used to prepare the test samples. The influence of the filler on selected properties of composites was evaluated. The physical properties of the filler as well as the processing properties of the mixture as well as the mechanical properties - impact strength and tensile strength of the obtained composites were investigated. Findings: A decrease in tensile strength and impact strength was observed along with an increase in the amount of filler. Research limitations/implications: It would be interesting to carry out further analyzes, in particular with a higher volume fraction of the filler or with a different composite structure, e.g. using PVC as a matrix. The developed research topic is a good material for the preparation of publications of a practical and scientific nature, especially useful in the research and industrial environment. Practical implications: The shredded glass-polyester waste can be used as a filler of polystyrene, however, the resulting composite could be used to produce parts with slightly less responsible functions such as artificial jewelery or toy elements. Originality/value: Obtained results are a new solution a global waste management solution for glass reinforced polyester waste, which may contribute to the sustainable development of the composite materials industry through the partial utilization of waste composites with a duroplastic matrix.


2014 ◽  
Vol 618 ◽  
pp. 140-145
Author(s):  
Yang Liu ◽  
Ren Zhang ◽  
En Quan Liang ◽  
Dong Li ◽  
Ying Chen ◽  
...  

The history of GLARE laminate was introduced. Through comparison with conventional aluminum alloy sheets, the excellent performance of GLARE as a new generation aeronautic material is discussed. The properties and application of GLARE in large civil aircraft indicates that new composite materials such as GLARE will replace bulk aluminum alloy in future aircraft structure. With the continuous development of material technologies, a trend of developing high strength and low cost composite materials will lead aviation industry to a new stage.


2010 ◽  
Vol 20 (3) ◽  
pp. 491-510 ◽  
Author(s):  
V.V. Mykhas’kiv ◽  
O.M. Khay ◽  
Ch. Zhang ◽  
A. Boström

Author(s):  
Yu. A. Balinova ◽  
D. V. Graschenkov ◽  
A. A. Shavnev ◽  
V. G. Babashov ◽  
A. S. Chaynikova ◽  
...  

This paper describes achievements of the All-Russian Scientific Research Institute of Aviation Materials in the field of creating high-temperature heat-shielding, ceramic and metal-ceramic composite materials. The advantages and prospects of applying the developed materials in the manufacturing of structural elements of aircraft and friction joints are discussed. The synthesis features and basic properties of metal-ceramic composite materials based on light alloys, refractory metal matrices, ceramic composite materials for use in heavily loaded structural elements of modern aircraft are presented. The main achievements in the field of heat-shielding materials based on refractory oxide fibres are presented, along with their properties and application in new-generation aircrafts.


2022 ◽  
Vol 5 (1) ◽  
pp. 15
Author(s):  
Mirela Koci

The future of the composites market looks attractive with opportunities in the transportation, construction, wind energy, pipe - tank, marine, consumer goods, electrical and electronics, aerospace, and others. The composite materials market is expected to reach an estimated $40.2 billion by 2024 and it is forecast to grow at a CAGR of 3.3% from 2019 to 2024. The composite materials that have started to be used in the production of tourist boats, especially those of the yacht type, have proved in practice the designers' expectations for the great advantages they have brought compared to steel. The performance of the new generation ships of this millennium, will require the ever-increasing use of new and innovative materials, to meet the also growing demands of potential buyers of these vehicles. On the other hand, based on the already sanctioned principles of the European Community for the observance of the norms set for CO2 emissions from maritime transport - (Green shipping) in respect of the Kyoto Protocol on Climate Change, it becomes more necessary to produce marine vehicles that significantly reduce the weight of marine vessels, consequently engine power and fuel consumption by significantly reducing CO2 emissions. This study aims to bring a specific analysis of the impact of composite materials to the CO2 emission’s reduction.


2020 ◽  
Vol 54 (28) ◽  
pp. 4457-4471
Author(s):  
Mamadou Abdoul Mbacké ◽  
Shahram Khazaie ◽  
Sylvain Fréour ◽  
Frédéric Jacquemin

The composite materials used in marine environments are subjected to mechanical loads along with the water absorption. The analysis of the behavior of such materials requires to take into account the coupling between the mechanical and diffusion behaviors. The hygro-mechanical coupling has been widely investigated experimentally and numerically. This paper presents a numerical approach to model the hygro-mechanical coupling of composite materials. The diffusion process is modeled via the classical Fick’s law. The elasticity matrix is considered to belong to transverse isotropic class, i.e. the composite studied is a unidirectional one. The components of the former are considered as moisture content dependent. The constitutive law takes into account on the one hand the strain induced by the hygroscopic swelling and on the other hand the dependence of the mechanical properties (elastic constants along with the material ultimate strengths) on the moisture content. These are implemented in a finite element software used to investigate the influence of the hygro-mechanical coupling on the composite material behavior. The robustness of our numerical tool is investigated with some numerical case studies.


Sign in / Sign up

Export Citation Format

Share Document