Response of River Runoff in the Cryolithic Zone of Eastern Siberia (Lena River Basin) to Future Climate Warming

Author(s):  
A. G. Georgiadi ◽  
I. P. Milyukova ◽  
E. A. Kashutina
2013 ◽  
Vol 8 (3) ◽  
pp. 035040 ◽  
Author(s):  
Tetsuya Hiyama ◽  
Kazuyoshi Asai ◽  
Alexander B Kolesnikov ◽  
Leonid A Gagarin ◽  
Victor V Shepelev

Ecohydrology ◽  
2013 ◽  
Vol 7 (2) ◽  
pp. 188-196 ◽  
Author(s):  
A. N. Fedorov ◽  
P. P. Gavriliev ◽  
P. Y. Konstantinov ◽  
T. Hiyama ◽  
Y. Iijima ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Irina A. Kaygorodova ◽  
Elena V. Dzyuba ◽  
Natalya V. Sorokovikova

We studied the fauna of leech and leech-like species inhabiting main water streams of Eastern Siberia and its tributaries, which are attributed to Lake Baikal basin and Lena River basin. Here we present their list for the first time. This study was mainly aimed for free-living parasitic and carnivorous leeches whereas piscine parasites were not included specially. In total, the potamic leech fauna of Eastern Siberia includes 12 described species belonging to 10 genera. Representatives of three unidentified species of two genera Erpobdella and Barbronia have been also recorded.


Palaeobotany ◽  
2018 ◽  
Vol 9 ◽  
pp. 18-31
Author(s):  
N. V. Nosova ◽  
L. B. Golovneva

A revision of Sphenobaiera biloba Prynada from Northeastern Asia is based on restudy of the type material from the Zyryanka River Basin (Prynada’s collection), as well as additional specimens from the type locality (Samylina’s collection) and collections from the Ul’ya and Anadyr rivers. A new extended diagnosis of S. biloba based on the leaf morphology and epidermal structure is proposed. Geographic and stratigraphic distribution of this species in Northern Asia is discussed. S. bilobais known in the Aptian of Eastern Siberia (Lena River Basin) and from the early-middle Albian to Coniacian of northeastern Russia. In the Late Cretaceous this species was considered as relict and related with volcanogenic deposits of the Okhotsk-Chukotka volcanic belt.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2747
Author(s):  
Liudmila Lebedeva ◽  
David Gustafsson

The flow of large northern rivers has increased, but regional patterns of changes are not well understood. The aim of this study is the estimation of monthly discharge changes of the 11 river catchments in the Aldan River basin in Eastern Siberia, the largest Lena River tributary and the sixth largest river in Russia. We considered the trend dependence on month, number of years in the sample, finish and start years, and basin area. The median fraction of samples with no trend, positive and negative trends are 70.5%, 28.5%, and 1%, respectively. Longer samples tend to show more positive trends than shorter ones. There is an increasing fraction of samples with positive trends as a function of later sample end year, whereas the start year does not result in a similar pattern. The larger basins, with one exception, have more positive trends than smaller ones. The trends in monthly streamflow have prominent seasonality with absence of positive trends in June and increasing fraction of samples with positive trends from October till April. The study reports the recent streamflow changes on the rarely analyzed rivers in Eastern Siberia, where air temperature rises faster than in average on the globe. The study results are important for water resources management in the region and better understanding of current environmental changes.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1286
Author(s):  
Liudmila N. Yashina ◽  
Sergey A. Abramov ◽  
Alexander V. Zhigalin ◽  
Natalia A. Smetannikova ◽  
Tamara A. Dupal ◽  
...  

The discovery of genetically distinct hantaviruses (family Hantaviridae) in multiple species of shrews, moles and bats has revealed a complex evolutionary history involving cross-species transmission. Seewis virus (SWSV) is widely distributed throughout the geographic ranges of its soricid hosts, including the Eurasian common shrew (Sorex araneus), tundra shrew (Sorex tundrensis) and Siberian large-toothed shrew (Sorex daphaenodon), suggesting host sharing. In addition, genetic variants of SWSV, previously named Artybash virus (ARTV) and Amga virus, have been detected in the Laxmann’s shrew (Sorex caecutiens). Here, we describe the geographic distribution and phylogeny of SWSV and Altai virus (ALTV) in Asian Russia. The complete genomic sequence analysis showed that ALTV, also harbored by the Eurasian common shrew, is a new hantavirus species, distantly related to SWSV. Moreover, Lena River virus (LENV) appears to be a distinct hantavirus species, harbored by Laxmann’s shrews and flat-skulled shrews (Sorex roboratus) in Eastern Siberia and far-eastern Russia. Another ALTV-related virus, which is more closely related to Camp Ripley virus from the United States, has been identified in the Eurasian least shrew (Sorex minutissimus) from far-eastern Russia. Two highly divergent viruses, ALTV and SWSV co-circulate among common shrews in Western Siberia, while LENV and the ARTV variant of SWSV co-circulate among Laxmann’s shrews in Eastern Siberia and far-eastern Russia. ALTV and ALTV-related viruses appear to belong to the Mobatvirus genus, while SWSV is a member of the Orthohantavirus genus. These findings suggest that ALTV and ALTV-related hantaviruses might have emerged from ancient cross-species transmission with subsequent diversification within Sorex shrews in Eurasia.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1042
Author(s):  
Andrey Kalugin

The purpose of the study was to analyze the formation conditions of catastrophic floods in the Iya River basin over the observation period, as well as a long-term forecast of the impacts of future climate change on the characteristics of the high flow in the 21st century. The semi-distributed process-based Ecological Model for Applied Geophysics (ECOMAG) was applied to the Iya River basin. Successful model testing results were obtained for daily discharge, annual peak discharge, and discharges exceeding the critical water level threshold over the multiyear period of 1970–2019. Modeling of the high flow of the Iya River was carried out according to a Kling–Gupta efficiency (KGE) of 0.91, a percent bias (PBIAS) of −1%, and a ratio of the root mean square error to the standard deviation of measured data (RSR) of 0.41. The preflood coefficient of water-saturated soil and the runoff coefficient of flood-forming precipitation in the Iya River basin were calculated in 1980, 1984, 2006, and 2019. Possible changes in the characteristics of high flow over summers in the 21st century were calculated using the atmosphere–ocean general circulation model (AOGCM) and the Hadley Centre Global Environment Model version 2-Earth System (HadGEM2-ES) as the boundary conditions in the runoff generation model. Anomalies in values were estimated for the middle and end of the current century relative to the observed runoff over the period 1990–2019. According to various Representative Concentration Pathways (RCP-scenarios) of the future climate in the Iya River basin, there will be less change in the annual peak discharge or precipitation and more change in the hazardous flow and its duration, exceeding the critical water level threshold, at which residential buildings are flooded.


Sign in / Sign up

Export Citation Format

Share Document