Globalization of Wireless and Mobile Networks; the Impact to Africa

Author(s):  
Stanley H. Mneney
Keyword(s):  
Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1387
Author(s):  
Oswaldo Sebastian Peñaherrera-Pulla ◽  
Carlos Baena ◽  
Sergio Fortes ◽  
Eduardo Baena ◽  
Raquel Barco

Cloud Gaming is a cutting-edge paradigm in the video game provision where the graphics rendering and logic are computed in the cloud. This allows a user’s thin client systems with much more limited capabilities to offer a comparable experience with traditional local and online gaming but using reduced hardware requirements. In contrast, this approach stresses the communication networks between the client and the cloud. In this context, it is necessary to know how to configure the network in order to provide service with the best quality. To that end, the present work defines a novel framework for Cloud Gaming performance evaluation. This system is implemented in a real testbed and evaluates the Cloud Gaming approach for different transport networks (Ethernet, WiFi, and LTE (Long Term Evolution)) and scenarios, automating the acquisition of the gaming metrics. From this, the impact on the overall gaming experience is analyzed identifying the main parameters involved in its performance. Hence, the future lines for Cloud Gaming QoE-based (Quality of Experience) optimization are established, this way being of configuration, a trendy paradigm in the new-generation networks, such as 4G and 5G (Fourth and Fifth Generation of Mobile Networks).


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
A. B. Vallejo-Mora ◽  
M. Toril ◽  
S. Luna-Ramírez ◽  
M. Regueira ◽  
S. Pedraza

UpLink Power Control (ULPC) is a key radio resource management procedure in mobile networks. In this paper, an analytical model for estimating the impact of increasing the nominal power parameter in the ULPC algorithm for the Physical Uplink Shared CHannel (PUSCH) in Long Term Evolution (LTE) is presented. The aim of the model is to predict the effect of changing the nominal power parameter in a cell on the interference and Signal-to-Interference-plus-Noise Ratio (SINR) of that cell and its neighbors from network statistics. Model assessment is carried out by means of a field trial where the nominal power parameter is increased in some cells of a live LTE network. Results show that the proposed model achieves reasonable estimation accuracy, provided uplink traffic does not change significantly.


2021 ◽  
Vol 191 ◽  
pp. 207-214
Author(s):  
Dounia El Idrissi ◽  
Najib Elkamoun ◽  
Rachid Hilal

2021 ◽  
Vol 9 (03) ◽  
pp. 72-79
Author(s):  
Akohoule Alex ◽  
◽  
Bamba Aliou ◽  
Kamagate Aladji ◽  
Konate Adama ◽  
...  

In wireless networks, propagation models are used to assess the received power signal and estimate the propagation channel. These models depend on the pathloss exponent (PLE) which is one of the main parameters to characterize the propagation environment. Indeed, in the wireless channel, the path loss exponent has a strong impact on the quality of the links and must therefore be estimated with precision for an efficient design and operation of the wireless network. This paper addresses the issue of path loss exponents estimation for mobile networks in four outdoor environments. This study is based on measurements carried out in four outdoor environments at the frequency of 2600 MHz within a bandwidth of 70 MHz. It evaluates the path loss exponent, and the impact of obstacles present in the environments. The parameters of the propagation model determined from the measurements show that the average power of the received signal decreases logarithmically with the distance. We obtained path loss exponents values of 4.8, 3.53, 3.6 and 3.99 for the site 1, site 2, site 3 and site 4, respectively. Clearly the density of the obstacles has an impact on the path loss exponents and our study shows that the received signal decrease faster as the transmitter and receiver separation in the dense environments.


Author(s):  
Tobias Hoßfeld ◽  
Michael Duelli ◽  
Dirk Staehle ◽  
Phuoc Tran-Gia

The performance of P2P content distribution in cellular networks depends highly on the cooperation and coordination of heterogeneous and often selfish mobile users. The major challenges are the identification of problems arising specifically in cellular mobile networks and the development of new cooperation strategies to overcome these problems. In the coherent previous chapter, the authors focused on the selfishness of users in such heterogeneous environments. This discussion is now extended by emphasizing the impact of mobility and vertical handover between different wireless access technologies. An abstract mobility model is required to allow the performance evaluation in feasible computational time. As a result, the performance in today’s and future cellular networks is predicted and new approaches to master heterogeneity in cellular networks are derived.


Author(s):  
Ye Ouyang ◽  
Hosein Fallah

The past few years have seen mobile operators transition to next-generation mobile networks, specifically from third-generation networks (3G) to long term evolution (LTE). This paper describes the basic architecture and topology of UMTS R4 core network and introduces two options in network planning, i.e., flat structure or layered structure. This paper introduces the re-homing of radio network controller (RNC) and base station controller (BSC) and studies the impact on the performance of voice core of UMTS networks. The proposed RNC re-homing models are created and analyzed for voice core of UMTS networks. The paper concludes that the appropriate RNC re-homing optimizes the traffic of voice core in UMTS network.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ricardo Marco Alaez ◽  
Jose M. Alcaraz Calero ◽  
Qi Wang ◽  
Fatna Belqasmi ◽  
May El Barachi ◽  
...  

Fourth-Generation (4G) mobile networks are based on Long-Term Evolution (LTE) technologies and are being deployed worldwide, while research on further evolution towards the Fifth Generation (5G) has been recently initiated. 5G will be featured with advanced network infrastructure sharing capabilities among different operators. Therefore, an open-source implementation of 4G/5G networks with this capability is crucial to enable early research in this area. The main contribution of this paper is the design and implementation of such a 4G/5G open-source testbed to investigate multioperator infrastructure sharing capabilities executed in virtual architectures. The proposed design and implementation enable the virtualization and sharing of some of the components of the LTE architecture. A testbed has been implemented and validated with intensive empirical experiments conducted to validate the suitability of virtualizing LTE components in virtual infrastructures (i.e., infrastructures with multitenancy sharing capabilities). The impact of the proposed technologies can lead to significant saving of both capital and operational costs for mobile telecommunication operators.


2005 ◽  
Vol 02 (03) ◽  
pp. 235-257 ◽  
Author(s):  
ARABELLA BHUTTO

This paper examines the case of Nokia as a player of the mobile communication industry and provider of mobile communication system: Mobile handsets (consumer goods) and mobile networks (CoPS). Our aim is to analyze the impact of strategic management and dynamic capability developed by a firm of such an industry, which supports the entire system and manages inter-industry differences of consumer goods and CoPS. Recent convergence among technologies has raised competition among firms. Achieving and sustaining competitive advantage in this converging market is therefore possible by identifying threats and then developing strategies and capabilities to resolve them. This article concludes by examining how the firm can achieve its competitive advantage.


2019 ◽  
Vol 20 (1) ◽  
pp. 17-26
Author(s):  
Md. Sharif Hossen ◽  
Muhammad Sajjadur Rahim

Intermittently connected mobile networks are sparsely connected wireless ad-hoc networks where there is no end-to-end path from a source device to a destination. Generally, these paths do not exist. Hence, these devices use intermittent path using the concept of the store-and-forward mechanism to successfully do the communication. These networks are featured by long delay, dissimilar data rates, and larger error rates. Hence, we see the analysis of several delay-tolerant routing protocols, e.g., epidemic, spray-and-wait, prophet, maxprop, rapid, and spray-and-focus using opportunistic network environment simulator. At first, the investigations of the above considered routing protocols are done across three mobility models namely random direction, random walk, and shortest path map based movement mobility model for node impact only. Then, we evaluate these routing protocols against the impact of message copy, buffer, and time-to-live using shortest path map considering the result of node impact. We use three metrics and the result shows that spray-and-focus deserves good performance for showing higher delivery, lower latency, and lower overhead among all routing techniques while epidemic the poor.


Sign in / Sign up

Export Citation Format

Share Document