scholarly journals Analytical Model for Estimating the Impact of Changing the Nominal Power Parameter in LTE

2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
A. B. Vallejo-Mora ◽  
M. Toril ◽  
S. Luna-Ramírez ◽  
M. Regueira ◽  
S. Pedraza

UpLink Power Control (ULPC) is a key radio resource management procedure in mobile networks. In this paper, an analytical model for estimating the impact of increasing the nominal power parameter in the ULPC algorithm for the Physical Uplink Shared CHannel (PUSCH) in Long Term Evolution (LTE) is presented. The aim of the model is to predict the effect of changing the nominal power parameter in a cell on the interference and Signal-to-Interference-plus-Noise Ratio (SINR) of that cell and its neighbors from network statistics. Model assessment is carried out by means of a field trial where the nominal power parameter is increased in some cells of a live LTE network. Results show that the proposed model achieves reasonable estimation accuracy, provided uplink traffic does not change significantly.

Author(s):  
Yongxiang Hu ◽  
Zhenqiang Yao ◽  
Jun Hu

Laser shock peening (LSP) is an innovative surface treatment technique similar to shot peening. An analytical model to predict the residual stress field can obtain the impact effect much quickly, and will be invaluable in enabling a close-loop process control in production, saving time and cost of processing. A complete analytical model of LSP with some reasonable simplification is proposed to predict residual stresses in depth by a sequential application of a confined plasma development model and a residual stress model. The spatial distribution of the shock pressure and the high strain rate effect are considered in the model. Good agreements have been shown with several experimental measured results for various laser conditions and target materials, thus proving the validity of the proposed model.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1366 ◽  
Author(s):  
Jinqing Linghu ◽  
Longyun Kang ◽  
Ming Liu ◽  
Bihua Hu ◽  
Zefeng Wang

Establishing a model equation with high accuracy and high computational efficiency is very important for the estimation of battery state of charge (SOC). To ensure better SOC estimation results, most studies have focused on the improvement of the algorithm, while the impact of the model equation which may offset the benefits of advanced algorithms has been overlooked. To address this problem, this paper studies the widely used model equations and presents a new model equation based on a Gaussian function that improves the SOC estimation accuracy and computational efficiency. With the Worldwide harmonized Light Vehicles Test Cycle (WLTC) which is highly dynamic and more realistic than any other driving cycles, the proposed model equation is applied to different filtering algorithms to validate its performance in SOC estimation. The results indicate that the proposed model equation can greatly improve the accuracy of SOC estimation without an increase of computation. In addition, for the traditional polynomial-based model equations, the 6th-order power function polynomial has better performance in SOC estimation than polynomials with other orders.


2021 ◽  
Author(s):  
Felix Mairanowski ◽  
Denis Below

Abstract It is shown that derived from the solution of differential equations analytical model adequately describes development epidemics with changes in both lockdown conditions and the effective rate of mass vaccination of the population. As in previous studies, the control calculations are in good agreement with observations at all stages of epidemic growth. One of the two model coefficients is uniquely related to the lockdown efficiency parameter. We obtained an approximate correlation between this parameter and the main conditions of lockdown, in particular, physical distancing, reduction in social contacts and strictness of the mask regime. The calculation of the incident over a seven-day period using the proposed model is in good agreement with the observational data. Analysis of both curves shows that a better agreement can be obtained by taking into account the lag time of the epidemic response of about 10 days. From the reverse calculation a time-varying curve of the infection rate associated with the "new" virus strain under mutation conditions is obtained, which is qualitatively confirmed by the sequencing data. Based on these studies, it is possible to conclude that the ASILV analytical model developed here can be used to reliably and promptly predict epidemic development under conditions of lockdown and mass vaccination without the use of numerical methods. The functional relationships identified allow us to conduct a rapid analysis of the impact of each of the model parameters on the overall process of the epidemic. In contrast to previous studies, the calculations of the proposed model were performed using EXCEL, rather than a standard calculator. This is due to the need to account for multiple changes in lockdown conditions and vaccination rates.


Author(s):  
Jiangbo Bai ◽  
Junjiang Xiong ◽  
Ajit R Shenoi ◽  
Meng Liu

This paper proposes a new analytical model to predict plastic deformation and strain distributions in aluminium-alloy plates under low velocity impact loading. The low velocity impact load on the fully clamped circular plate was idealized as a quasi-static normal point force acting at the centre of plate. Based on apt geometrical approximation and assumptions, governing equations were established to predict the out-of-plane deflection and the radial tensile, radial and circumferential flexure strains in fully clamped conditions. From the deformation theory of plasticity, a new formula was derived to estimate the impact load by incorporating strain-energy approach, bilinear strain-hardening constitutive model and the one-dimensional Tresca yield criterion. Low velocity impact tests were performed to confirm the proposed model and good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed model.


2020 ◽  
Author(s):  
Sajjad Ahmad Afridi ◽  
Asad Shahjehan ◽  
Maqsood Haider ◽  
Dr Uzma Munawar

This study examined the impact of employee empathy on customers’ advocacy directly and indirectly through customers’ loyalty. Moreover, the interacting effect of customers’ trust was verified between the association of customers’ loyalty and advocacy. The attributes of the proposed model were examined in the context of first line employee and patients’ interactions. A total of 220 responses were collected for analysis from the private hospitals of Peshawar. The model fitness was confirmed through confirmatory factor analysis and hypotheses were examined. Findings confirmed the positive and significant impact of employee empathy on customers’ advocacy. Further, the mediating effect was examined and found that loyalty partially mediates employee empathy and customers’ advocacy. Additionally, trust was found a significant moderator between the association of customer loyalty and advocacy. Furthermore, findings revealed that trust based loyalty significantly and positively mediates employee empathy and customers’ advocacy. Findings of the present study provide understanding for the service sector, particularly in healthcare, to enhance customers’ loyalty, advocacy, and trust through service employee’s empathic aptitude. Keywords: Employee empathy, Service Eco-system, Customers’ Loyalty, Customers’ Advocacy, Trust-Based Loyalty, Healthcare, S-D Logic


2019 ◽  
Vol 9 (4) ◽  
pp. 504-511
Author(s):  
Sikha Mishra ◽  
Urmila Bhanja ◽  
Guru Prasad Mishra

Introduction: A new analytical model is designed for Workfunction Modulated Rectangular Recessed Channel-Silicon On Insulator (WMRRC-SOI) MOSFET that considers the concept of groove gate and implements an idea of workfunction engineering. Methods: The impact of Negative Junction Depth (NJD) and oxide thickness (tox) are analyzed on device performances such as Sub-threshold Slope (SS), Drain Induced Barrier Lowering (DIBL) and threshold voltage. Results: The results of the proposed work are evaluated with the Rectangular Recessed Channel-Silicon On Insulator (RRC-SOI) MOSFET keeping the metal workfunction constant throughout the gate region. Furthermore, an analytical model is developed using 2D Poisson’s equation and threshold voltage is estimated in terms of minimum surface potential. Conclusion: In this work, the impact of Negative Junction Depth (NJD) on minimum surface potential and the drain current are also evaluated. It is observed from the analysis that the analog switching performance of WMRRC-SOI MOSFET surpasses RRC-SOI MOSFET in terms of better driving capability, high Ion/Ioff ratio, minimized Short Channel Effects (SCEs) and hot carrier immunity. Results are simulated using 2D Sentaurus TCAD simulator for validation of the proposed structure.


2017 ◽  
Vol 921 (3) ◽  
pp. 7-13 ◽  
Author(s):  
S.V. Grishko

This paper shows that the accuracy of relative satellite measurements depend not only on the length of the baseline, as it is regulated by the rating formula of accuracy of GNSS equipment, but also on the duration of observations. As a result of the strict adjustment much redundant satellite networks with different duration of observations obtained covariance matrix of baselines, the most realistic reflecting the actual error of satellite observations. Research of forms of communication of these errors from length of the baseline and duration of its measurement is executed. A significant influence of solar activity on accuracy of satellite measurements, in general, leads to unequal similar series of measurements made at different periods, for example, in the production of monitoring activities. The model of approximation of the functional dependence of accuracy of the baseline from its length and duration of observations having good qualitative characteristics is offered. Based on the proposed model, we analyzed the dynamics of changes in measurement accuracy with an increase in observation time.


2021 ◽  
pp. 174425912098418
Author(s):  
Toivo Säwén ◽  
Martina Stockhaus ◽  
Carl-Eric Hagentoft ◽  
Nora Schjøth Bunkholt ◽  
Paula Wahlgren

Timber roof constructions are commonly ventilated through an air cavity beneath the roof sheathing in order to remove heat and moisture from the construction. The driving forces for this ventilation are wind pressure and thermal buoyancy. The wind driven ventilation has been studied extensively, while models for predicting buoyant flow are less developed. In the present study, a novel analytical model is presented to predict the air flow caused by thermal buoyancy in a ventilated roof construction. The model provides means to calculate the cavity Rayleigh number for the roof construction, which is then correlated with the air flow rate. The model predictions are compared to the results of an experimental and a numerical study examining the effect of different cavity designs and inclinations on the air flow rate in a ventilated roof subjected to varying heat loads. Over 80 different test set-ups, the analytical model was found to replicate both experimental and numerical results within an acceptable margin. The effect of an increased total roof height, air cavity height and solar heat load for a given construction is an increased air flow rate through the air cavity. On average, the analytical model predicts a 3% higher air flow rate than found in the numerical study, and a 20% lower air flow rate than found in the experimental study, for comparable test set-ups. The model provided can be used to predict the air flow rate in cavities of varying design, and to quantify the impact of suggested roof design changes. The result can be used as a basis for estimating the moisture safety of a roof construction.


2021 ◽  
Vol 10 (s1) ◽  
Author(s):  
Pablo Marshall

Abstract Objectives: Coronavirushas had profound effects on people’s lives and the economy of many countries, generating controversy between the need to establish quarantines and other social distancing measures to protect people’s health and the need to reactivate the economy. This study proposes and applies a modification of the SIR infection model to describe the evolution of coronavirus infections and to measure the effect of quarantine on the number of people infected. Methods: Two hypotheses, not necessarily mutually exclusive, are proposed for the impact of quarantines. According to the first hypothesis, quarantine reduces the infection rate, delaying new infections over time without modifying the total number of people infected at the end of the wave. The second hypothesis establishes that quarantine reduces the population infected in the wave. The two hypotheses are tested with data for a sample of 10 districts in Santiago, Chile. Results: The results of applying the methodology show that the proposed model describes well the evolution of infections at the district level. The data shows evidence in favor of the first hypothesis, quarantine reduces the infection rate; and not in favor of the second hypothesis, that quarantine reduces the population infected. Districts of higher socio-economic levels have a lower infection rate, and quarantine is more effective. Conclusions: Quarantine, in most districts, does not reduce the total number of people infected in the wave; it only reduces the rate at which they are infected. The reduction in the infection rate avoids peaks that may collapse the health system.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3768
Author(s):  
Yongshou Yang ◽  
Shiliang Fang

Broadband acoustic Doppler current profiler (ADCP) is widely used in agricultural water resource explorations, such as river discharge monitoring and flood warning. Improving the velocity estimation accuracy of broadband ADCP by adjusting the waveform parameters of a phase-encoded signal will reduce the velocity measurement range and water stratification accuracy, while the promotion of stratification accuracy will degrade the velocity estimation accuracy. In order to minimize the impact of these two problems on the measurement results, the ADCP waveform optimization problem that satisfies the environment constraints while keeping high velocity estimation accuracy or stratification accuracy is studied. Firstly, the relationship between velocity or distance estimation accuracy and signal waveform parameters is studied by using an ambiguity function. Secondly, the constraints of current velocity range, velocity distribution and other environmental characteristics on the waveform parameters are studied. For two common measurement applications, two dynamic configuration methods of waveform parameters with environmental adaptability and optimal velocity estimation accuracy or stratification accuracy are proposed based on the nonlinear programming principle. Experimental results show that compared with the existing methods, the velocity estimation accuracy of the proposed method is improved by more than 50%, and the stratification accuracy is improved by more than 22%.


Sign in / Sign up

Export Citation Format

Share Document