Characterizing the Exposure of Regional-Scale Air Quality in the Northeastern United States

Author(s):  
Valerie C. Garcia ◽  
J. Crooks ◽  
E. Gego ◽  
S. Lin ◽  
S. T. Rao
2016 ◽  
Author(s):  
Alison C. Dibble ◽  
James W. Hinds ◽  
Ralph Perron ◽  
Natalie Cleavitt ◽  
Richard L. Poirot ◽  
...  

2014 ◽  
Vol 5 (2) ◽  
pp. 387-393 ◽  
Author(s):  
Tyler S. Evans ◽  
Krysten L. Schuler ◽  
W. David Walter

Abstract Chronic wasting disease (CWD) is a prion disease that affects both wild and captive cervid populations. In the past 45 y, CWD has spread from northern Colorado to all bordering states, as well as the midwestern United States (Midwest) and northeastern United States (Northeast), Canada, and South Korea. Because CWD is a relatively new issue for wildlife management agencies in the Northeast, we surveyed a representative (e.g., cervid biologist, wildlife veterinarian) from 14 states to gain a better understanding of state-specific surveillance measures. Between 2002 and 2012, New York (37,093) and Pennsylvania (35,324) tested the greatest number of harvested white-tailed deer Odocoileus virginianus in the Northeast. Additionally, the 14 states surveyed have tested 121,730 harvested deer, or approximately 15,216/y, since CWD was first detected in 2005. The most common tissues used by agencies in the Northeast for testing were retropharyngeal lymph nodes, which have been determined to be the most reliable in detecting CWD in cervids. Understanding CWD surveillance efforts at a regional scale can help to provide guidance for the development of new surveillance plans or the improvement of existing ones. Furthermore, collaborations among state and regional agencies in the Northeast may attempt to identify deficiencies in surveillance by state or subregion.


2010 ◽  
Vol 10 (15) ◽  
pp. 7415-7423 ◽  
Author(s):  
B. Gantt ◽  
N. Meskhidze ◽  
A. G. Carlton

Abstract. The contribution of marine organic emissions to the air quality in coastal areas of the western United States is studied using the latest version of the US Environmental Protection Agency (EPA) regional-scale Community Multiscale Air Quality (CMAQv4.7) modeling system. Emissions of marine isoprene, monoterpenes, and primary organic matter (POM) from the ocean are implemented into the model to provide a comprehensive view of the connection between ocean biology and atmospheric chemistry and air pollution. Model simulations show that marine organics can increase the concentration of PM2.5 by 0.1–0.3 μg m−3 (up to 5%) in some coastal cities such as San Francisco, CA. This increase in the PM2.5 concentration is primarily attributed to the POM emissions, with small contributions from the marine isoprene and monoterpenes. When marine organic emissions are included, organic carbon (OC) concentrations over the remote ocean are increased by up to 50% (25% in coastal areas), values consistent with recent observational findings. This study is the first to quantify the air quality impacts from marine POM and monoterpenes for the United States, and it highlights the need for inclusion of marine organic emissions in air quality models.


2008 ◽  
Vol 47 (2) ◽  
pp. 425-442 ◽  
Author(s):  
S. Kondragunta ◽  
P. Lee ◽  
J. McQueen ◽  
C. Kittaka ◽  
A. I. Prados ◽  
...  

Abstract NOAA’s operational geostationary satellite retrievals of aerosol optical depths (AODs) were used to verify National Weather Service developmental (research mode) particulate matter (PM2.5) predictions tested during the summer 2004 International Consortium for Atmospheric Research on Transport and Transformation/New England Air Quality Study (ICARTT/NEAQS) field campaign. The forecast period included long-range transport of smoke from fires burning in Canada and Alaska and a regional-scale sulfate event over the Gulf of Mexico and the eastern United States. Over the 30-day time period for which daytime hourly forecasts were compared with observations, the categorical (exceedance defined as AOD > 0.55) forecast accuracy was between 0% and 20%. Hourly normalized mean bias (forecasts − observations) ranged between −50% and +50% with forecasts being positively biased when observed AODs were small and negatively biased when observed AODs were high. Normalized mean errors are between 50% and 100% with the errors on the lower end during the 18–22 July 2004 time period when a regional-scale sulfate event occurred. Spatially, the errors are small over the regions where sulfate plumes were present. The correlation coefficient also showed similar features (spatially and temporally) with a peak value of ∼0.6 during the 18–22 July 2004 time period. The dominance of long-range transport of smoke into the United States during the summer of 2004, neglected in the model predictions, skewed the model forecast performance. Enhanced accuracy and reduced normalized mean errors during the time period when a sulfate event prevailed show that the forecast system has skill in predicting PM2.5 associated with urban/industrial pollution events.


2007 ◽  
Vol 46 (7) ◽  
pp. 945-960 ◽  
Author(s):  
Ho-Chun Huang ◽  
Xin-Zhong Liang ◽  
Kenneth E. Kunkel ◽  
Michael Caughey ◽  
Allen Williams

Abstract The impacts of air pollution on the environment and human health could increase as a result of potential climate change. To assess such possible changes, model simulations of pollutant concentrations need to be performed at climatic (seasonal) rather than episodic (days) time scales, using future climate projections from a general circulation model. Such a modeling system was employed here, consisting of a regional climate model (RCM), an emissions model, and an air quality model. To assess overall model performance with one-way coupling, this system was used to simulate tropospheric ozone concentrations in the midwestern and northeastern United States for summer seasons between 1995 and 2000. The RCM meteorological conditions were driven by the National Centers for Environmental Prediction/Department of Energy global reanalysis (R-2) using the same procedure that integrates future climate model projections. Based on analyses for several urban and rural areas and regional domains, fairly good agreement with observations was found for the diurnal cycle and for several multiday periods of high ozone episodes. Even better agreement occurred between monthly and seasonal mean quantities of observed and model-simulated values. This is consistent with an RCM designed primarily to produce good simulations of monthly and seasonal mean statistics of weather systems.


2008 ◽  
Vol 58 (7) ◽  
pp. 902-912 ◽  
Author(s):  
Marc Carreras-Sospedra ◽  
Donald Dabdub ◽  
Jacob Brouwer ◽  
Eladio Knipping ◽  
Naresh Kumar ◽  
...  

2021 ◽  
pp. 2150017
Author(s):  
Christian Braneon ◽  
Robert Field ◽  
Edmund Seto ◽  
Kai Chen ◽  
Kathryn McConnell ◽  
...  

In the absence of preventive therapies or effective treatment for most cases of coronavirus disease 2019 (COVID-19), governments worldwide have sought to minimize person-to-person severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission through a variety of lock-down measures and social distancing policies. Extreme events like the COVID-19 pandemic present a tremendous opportunity to make quantitative connections between changes in anthropogenic forcing, social and economic activity, and the related Earth system response. In this paper, we examine the air quality impacts associated with the pandemic response measures in the Northeastern United States.


Sign in / Sign up

Export Citation Format

Share Document