Inertial Coordinate System on the Sky

2021 ◽  
Author(s):  
Abhijit Samanta

Abstract We have derived a metric field equation in the locally inertial coordinate system from Einstein's field equation considering the energy density of the moving particle with the approximations that the force field under which the particle is moving is weak and the velocity of the particle is non-relativistic. We study the motion of different microscopic systems using this metric equation and compared the results with the experimentally measured values and we find that the results are identical.


2015 ◽  
Vol 8 (1) ◽  
pp. 102
Author(s):  
Zifeng Li

<p class="1Body">Selection of the coordinate system is essential for rotation problems. Otherwise, mistakes may occur due to inaccurate measurement of angular speed. Approximate inertial coordinate system selections for rotation problems should be the gravitational field of the celestial body higher than the object being rotated: (1) the Earth fixed Cartesian coordinate system for normal rotation problem; (2) heliocentric - geocentric Cartesian coordinate system for satellites orbiting the Earth; (3) the Galaxy Heart - heliocentric Cartesian coordinates for Earth's rotation around the Sun. In astrophysics, mass calculation error and angular velocity measurement error lead to a black hole conjecture.</p>


1990 ◽  
Vol 141 ◽  
pp. 72-72
Author(s):  
V. K. Abalakin ◽  
V. I. Bogdanov ◽  
Yu.D. Boulanger ◽  
V. A. Naumov

For astronomical, geodetical and geodynamical investigations as well as for practical applications the inertial coordinate system is widely used which is based on the Fundamental Star Catalogue FK5 together with local coordinate systems in observation stations on the Earth's surface which are intrinsically connected with the geometry of the gravitation field.


2015 ◽  
Vol 5 (3) ◽  
pp. 234-239
Author(s):  
Платонова ◽  
Marina Platonova ◽  
Драпалюк ◽  
Mikhail Drapalyuk ◽  
Платонов ◽  
...  

This article discusses the the selection and justification of the reference system and of the generalized coordinates for the kinematic scheme developed by of the manipulator taking into account these factors. The absolute (inertial) coordinate system associated with the center of the support member (eg turntable), joins the arm to the base machine and the subsequent coordinate system formed in accordance with the rules. On the whole, to describe the position of the investigated little detail of the manipulator in the space of generalized coordinates must be four and five right-hand orthogonal coordinate systems.


1995 ◽  
Vol 13 (7) ◽  
pp. 713-716 ◽  
Author(s):  
M. A. Hapgood

Abstract. Raw data on spacecraft orbits and attitude are usually supplied in "inertial" coordinates. The normal geocentric inertial coordinate system changes slowly in time owing to the effects of astronomical precession and the nutation of the Earth's rotation axis. However, only precession produces a change that is significant compared with the errors in determining spacecraft position. We show that the transformations specified by Russell (1971) and Hapgood (1992) are strictly correct only if the epoch-of-date inertial system is used. We provide a simple formula for estimating the error in the calculated position if the inertial system for some other epoch is used. We also provide a formula for correcting inertial coordinates to the epoch-of-date from the standard fixed epoch of J2000.0.


1976 ◽  
Vol 31 (9) ◽  
pp. 1038-1041 ◽  
Author(s):  
J. R. Saraf

Abstract A kinetic model for a weakly-ionized plasma interacting with radiation is proposed based on the energy-momentum method, in which both energy and momentum of the system are conserved. The radiation-initiated ionization is obtained in a non-inertial coordinate system, and the proposed model satisfies the H-theorem.


1997 ◽  
Vol 9 (5) ◽  
pp. 318-323 ◽  
Author(s):  
Hisashi Kajita ◽  
◽  
Kazuhiro Kosuge

A manipulator/vehicle system floating on water consists of a vehicle with a manipulator attached to it. Similar to the space manipulator system, the system on water is not fixed to an inertial coordinate system. So, external forces affect the motion of the system. In this paper, we propose an algorithm for controlling the position and orientation of the end-effector of the manipulator/vehicle system in an inertial coordinate system under the assumption that the stability of the vehicle is maintained. We derive the kinematics of the system and propose a trajectory tracking control algorithm based on the resolved motion rate control, then prove convergence of the control algorithm using the Lyapunov's method. Experimental results illustrate the validity of the proposed control algorithm.


2018 ◽  
Vol 90 (8) ◽  
pp. 1180-1191 ◽  
Author(s):  
Xiaobin Lian ◽  
Jiafu Liu ◽  
Chuang Wang ◽  
Tiger Yuan ◽  
Naigang Cui

Purpose The purpose of this paper is to resolve complex nonlinear dynamical problems of the pitching axis of solar sail in body coordinate system compared with inertial coordinate system. And saturation condition of controlled torque of vane in the orbit with big eccentricity ration, uncertainty and external disturbance under complex space background are considered. Design/methodology/approach The pitch dynamics of the sailcraft in the prescribed elliptic earth orbits is established considering the torques by the control vanes, gravity gradient and offset between the center-of-mass (cm) and center-of-pressure (cp). The maximal torques afforded by the control vanes are numerically determined for the sailcraft at any position with any pitch angle, which will be used as the restriction of the attitude control torques. The finite/infinite time adaptive sliding mode saturation controller and Bang–Bang–Radial Basis Function (RBF) controller are designed for the sailcraft with restricted attitude control torques. The model uncertainty and the input error (the error between real input and ideal control law input) are solved using the RBF network. Findings The finite true anomaly adaptive sliding mode saturation controller performed better than the other two controllers by comparing the numerical results in the paper. The control torque saturation, the model uncertainty and the external disturbance were also effectively solved using the infinite and finite time adaptive sliding mode saturation controllers by analyzing the numerical simulations. The stabilization of the pitch motion was accomplished within half orbit period. Practical implications The complex accurate dynamics can be approximated using the RBF network. The controllers can be applied to stabilization of spacecraft attitude dynamics with uncertainties in complex space environment. Originality/value Advanced control method is used in this paper; saturation of controlled torque of vane is resolved when the orbit with big eccentricity ration is considered and uncertainty and external disturbance under complex space background are settled. Moreover, complex and accurate nonlinear dynamical model of pitching axis of solar sail in body coordinate system compared with inertial coordinate system is provided.


Sign in / Sign up

Export Citation Format

Share Document