The Mineral Dust Record in a High Altitude Alpine Glacier (Colle Gnifetti, Swiss Alps)

Author(s):  
Dietmar Wagenbach ◽  
Klaus Geis
2021 ◽  
Author(s):  
Pascal Egli ◽  
Stuart Lane ◽  
James Irving ◽  
Bruno Belotti

<p>If tongues of temperate Alpine glaciers are subjected to high temperatures their topography may change rapidly due to the effects of differential melt related to aspect and debris cover. Independent of local surface melt, the position of subglacial conduits may have an important influence on ice creep and so on changes in topography at the ice surface. This reflects analyses that suggest that subglacial conduits at glacier margins may not be permanently pressurised; and that creep closure rates are insufficient to close subglacial conduits completely. Rapid climate warming may exacerbate this process, due both to surface-melt driven glacier thinning and over-enlargement of conduits due to high upstream melt rates. Over-enlarged conduits that are not permanently pressurised would lead to the development of structural weaknesses and eventual collapse of the ice surface into the conduits. We hypothesise that this collapse mechanism could represent an important and alternative driver of rapid glacier retreat.</p><p>In this paper we combine: (1) an extensive survey of glacier margin collapse in the Swiss Alps with (2) intensive monitoring of the dynamics of such collapse at the Otemma Glacier in the south-western Swiss Alps. Daily UAV surveys were undertaken at a high spatial resolution and with precise and accurate ground control. These datasets were used to generate surface change information using SfM-MVS photogrammetry. Surfaces of difference showed surface loss that could not be related to ablation alone. Combining them with three-dimensional ground-penetrating radar (GPR) surveys in the same zone showed that the surface loss was coincident spatially with the positions of sub-glacial conduits, for ice thicknesses between 20 m and 50 m. We show that this form of subglacial conduit collapse is also happening for several other glaciers in the Swiss Alps, and that this mechanism of snout collapse and glacier retreat has become more common than has hitherto been the case. It also leads to temporal patterns of glacier margin retreat that differ from those that might be expected due to glacier mass balance and ice mass flux effects alone.</p>


2015 ◽  
Vol 9 (1) ◽  
pp. 1133-1175 ◽  
Author(s):  
J. Gabbi ◽  
M. Huss ◽  
A. Bauder ◽  
F. Cao ◽  
M. Schwikowski

Abstract. Light-absorbing impurities in snow and ice control glacier melt as shortwave radiation represents the main component of the surface energy balance. Here, we investigate the long-term effect of snow impurities, i.e. Saharan dust and black carbon (BC), on albedo and glacier mass balance. The analysis was performed over the period 1914–2014 for two sites on Claridenfirn, Swiss Alps, where an outstanding 100 year record of seasonal mass balance measurements is available. Information on atmospheric deposition of mineral dust and BC over the last century was retrieved from two firn/ice cores of high-alpine sites. A combined mass balance and snow/firn layer model was employed to assess the dust/BC-albedo feedback. Compared to pure snow conditions, the presence of Saharan dust and BC lowered the mean annual albedo by 0.04–0.06 and increased melt by 15–19% on average depending on the location on the glacier. BC clearly dominated absorption which is about three times higher than that of mineral dust. The upper site has experienced mainly positive mass balances and impurity layers were continuously buried whereas at the lower site, surface albedo was more strongly influenced by re-exposure of dust-enriched layers due to frequent years with negative mass balances.


2010 ◽  
Vol 10 (4) ◽  
pp. 11361-11399 ◽  
Author(s):  
J. Boulon ◽  
K. Sellegri ◽  
H. Venzac ◽  
D. Picard ◽  
E. Weingartner ◽  
...  

Abstract. Aerosol nucleation is an important source of atmospheric particles which have an effect both on the climatic system and on human health. The new particle formation (NPF) process is an ubiquitous phenomenon, yet poorly understood despite the many studies performed on this topic using various approaches (observation, experimentation in smog chambers and modeling). In this work, we investigate the formation of secondary charged aerosols and its climatology at Jungfraujoch, a high altitude site in Swiss Alps (3580 m a.s.l.). Charged particles and clusters (0.5–1.8 nm) were measured within the EUCAARI program from April 2008 to April 2009 and allowed the detection of nucleation events. We found that the aerosol concentration, which is dominated by cluster size class, shows a strong diurnal pattern and that the aerosol size distribution and concentration are strongly influenced by the presence of clouds either during daytime or nighttime conditions. New particle formation events have been investigated and it appears that new particle formation occurs 17.5% of measured days and that the nucleation frequency is strongly linked to air mass origin and path and negatively influenced by cloud presence. In fact, we show that NPF events depend on the occurrence of high concentration VOCs air masses which allowed clusters growing by condensation of organic vapors rather than nucleation of new clusters. Furthermore, the contribution of ions to nucleation process was studied and we found that ion-mediated nucleation (IMN) contribute to 26% of the total nucleation so that ions play an important role in the new particle formation and growth at Jungfraujoch.


2021 ◽  
Vol 21 (24) ◽  
pp. 18147-18174
Author(s):  
Nabil Deabji ◽  
Khanneh Wadinga Fomba ◽  
Souad El Hajjaji ◽  
Abdelwahid Mellouki ◽  
Laurent Poulain ◽  
...  

Abstract. Field measurements were conducted to determine aerosol chemical composition at a newly established remote high-altitude site in North Africa at the Atlas Mohammed V (AMV) atmospheric observatory located in the Middle Atlas Mountains. The main objectives of the present work are to investigate the variations in the aerosol composition and better assess global and regional changes in atmospheric composition in North Africa. A total of 200 particulate matter (PM10) filter samples were collected at the site using a high-volume (HV) collector in a 12 h sampling interval from August to December 2017. The chemical composition of the samples was analyzed for trace metals, water-soluble ions, organic carbon (OC/EC), aliphatic hydrocarbons, and polycyclic aromatic hydrocarbon (PAH) contents. The results indicate that high-altitude aerosol composition is influenced by both regional and transregional transport of emissions. However, local sources play an important role, especially during low wind speed periods, as observed for November and December. During background conditions characterized by low wind speeds (avg. 3 m s-1) and mass concentrations in the range from 9.8 to 12 μg m-3, the chemical composition is found to be dominated by inorganic elements, mainly suspended dust (61 %) and ionic species (7 %), followed by organic matter (7 %), water content (12 %), and unidentified mass (11 %). Despite the proximity of the site to the Sahara, its influence on the atmospheric composition at this high-altitude site was mainly seasonal and accounted for only 22 % of the sampling duration. Biogenic organics contributed up to 7 % of the organic matter with high contributions from compounds such as heneicosane, hentriacontane, and nonacosane. The AMV site is dominated by four main air mass inflows, which often leads to different aerosol chemical compositions. Mineral dust influence was seasonal and ranged between 21 % and 74 % of the PM mass, with peaks observed during the summer, and was accompanied by high concentrations of SO42- of up to 3.0 μg m-3. During winter, PM10 concentrations are low (<30 μg m-3), the influence of the desert is weaker, and the marine air masses (64 %) are more dominant with a mixture of sea salt and polluted aerosol from the coastal regions (Rabat and Casablanca). During the daytime, mineral dust contribution to PM increased by about 42 % because of road dust resuspension. In contrast, during nighttime, an increase in the concentrations of alkanes, PAHs, alkane-2-ones, and anthropogenic metals such as Pb, Ni, and Cu was found due to variations in the boundary layer height. The results provide the first detailed seasonal and diurnal variation of the aerosol chemical composition, which is valuable for long-term assessment of climate and regional influence of air pollution in North Africa.


1990 ◽  
Vol 14 ◽  
pp. 168-171 ◽  
Author(s):  
R. Lorrain ◽  
W. Haeberli

For the first time, a cold ice cover of a summit in the central Swiss Alps has been sampled from the surface to the bed for determining its isotopic composition in δD and δ18O. Results of the analyses show a striking decrease of δ-values with depth. The δ-value differences are greater than those explicable by a direct temperature effect, but a substantial increase in melt water percolation through the firn since the formation of the deepest ice layer may explain the situation of this high-altitude ice.


Author(s):  
Peter E Zingg ◽  
Fabio Bontadina

Bats have evolved migration to escape unfavourable climatic conditions. However, their migratory flyways and the way how they surmount geographical barriers are still unknown. The Jungfraujoch in the Swiss Alps is a mountain covered in permafrost (3460m ASL), known colloquially as the “Top of Europe”. Using broadband ultrasound recorders, we tested the occurrence of bats at the high altitude research station. In 36 nights, we recorded 268 bat call sequences of 8 species, including all European long-distance migrant bats. Since no feeding buzzes were recorded, we assume the bats were on transit. This is the first evidence to show that migrating bats can fly at unprecedented altitudes to cross the Alps. This feat outperforms the spectacular behaviour of the high altitude foraging bat Tadarida brasiliensis. Our findings shed light on the bats’ migratory flyways and demonstrate that the field of aeroecology can still uncover unexpected perspectives on the behaviour of bats.


2001 ◽  
Vol 47 (156) ◽  
pp. 85-96 ◽  
Author(s):  
Stephan Suter ◽  
Martin Laternser ◽  
Wilfried Haeberli ◽  
Regula Frauenfelder ◽  
Martin Hoelzle

AbstractThe thermal regime of high-altitude accumulation areas in the Swiss Alps was systematically investigated on the Jungfraufirn, Bernese Alps, on the Breithornplateau, Valais Alps, and on Grenzgletscher, Valais Alps. In 1991, 1992 and 1994, temperatures were measured in a deep hole (120 m deep) and in several shallow holes (14–30 m deep). Whereas the wide névé of the Jungfraufirn at 3400–3600 m a.s.l. and the 3800 m high Breithornplateau seems to be predominantly temperate, cold firn and ice temperatures were measured throughout on Grenzgletscher (3900–4450 m a.s.l.). Mean firn temperatures on Grenzgletscher vary strongly and range between −3° and −14°C. A comparison between the measured temperature profiles and a one-dimensional heat-conduction calculation shows that the release of latent heat by penetrating and refreezing meltwater decisively influences the thermal pattern of the firn pack. A multiple linear regression model, based on measured firn temperatures from the European Alps and the parameters altitude and aspect, yields aspect-dependent lower boundaries for the occurrence of cold firn ranging between 3400 (northerly aspects) and 4150 m a.s.l. (southerly aspects). A total of 120 glaciers with cold-firn areas are found when applying the model to glacier inventory data from the European Alps.


1990 ◽  
Vol 14 ◽  
pp. 168-171 ◽  
Author(s):  
R. Lorrain ◽  
W. Haeberli

For the first time, a cold ice cover of a summit in the central Swiss Alps has been sampled from the surface to the bed for determining its isotopic composition in δD and δ18O. Results of the analyses show a striking decrease of δ-values with depth. The δ-value differences are greater than those explicable by a direct temperature effect, but a substantial increase in melt water percolation through the firn since the formation of the deepest ice layer may explain the situation of this high-altitude ice.


Sign in / Sign up

Export Citation Format

Share Document