Conducting Polymer Electromechanical Actuators

Author(s):  
R. H. Baughman ◽  
L. W. Shacklette ◽  
R. L. Elsenbaumer ◽  
E. Plichta ◽  
C. Becht
2010 ◽  
Vol 123-125 ◽  
pp. 117-120 ◽  
Author(s):  
Ting Yang Dai ◽  
Xu Tang Qing ◽  
Chen Shen ◽  
Jing Wang ◽  
Yun Lu

A simple and versatile method has been invented to fabricate conducting polymer hydrogels via supramolecular self-assembly between polymers and multivalent cations. As-prepared hydrogels composed of poly(3,4-ethylenedioxythiophene) and poly(styrenesulfonate) (PEDOT-PSS) exhibit expanded-coil conformation in polymer chains, phase-separate at nanometer scale, possess controllable microstructure, and is responsive to external stimulus. The conducting PEDOT-PSS hydrogels have then been introduced into multiple-network hydrogels to obtain composite hydrogels combining enhanced mechanical strength and excellent electrical activity. Triple-network (TN) and special double-network (sDN) hydrogels, containing poly(acrylic acid) (PAA) and poly(acrylamide) (PAAm) as the matrix respectively, are successfully prepared. Finally, PEDOT-PSS hydrogels with self-strengthening function are directly fabricated via a one-step process under optimized conditions. The strengthening mechanisms for each kind of hydrogels are proposed, and the applicability in electrosensors, supercapacitors and electromechanical actuators are briefly demonstrated.


2014 ◽  
Vol 24 (25) ◽  
pp. 3866-3873 ◽  
Author(s):  
Isabella S. Romero ◽  
Nathan P. Bradshaw ◽  
Jesse D. Larson ◽  
Sean Y. Severt ◽  
Sandra J. Roberts ◽  
...  

2016 ◽  
Vol 4 (2) ◽  
pp. 1
Author(s):  
KUMAR RAJIV ◽  
SHARMA SHUCHI ◽  
DHIMAN NARESH ◽  
PATHAK DINESH ◽  
◽  
...  

2021 ◽  
Vol 278 ◽  
pp. 116797
Author(s):  
Nidhi Yadav ◽  
Nikita Kumari ◽  
Yoshito Ando ◽  
Shyam S. Pandey ◽  
Vipul Singh

Author(s):  
Kuirong Deng ◽  
Tianyu Guan ◽  
Fuhui Liang ◽  
Xiaoqiong Zheng ◽  
Qingguang Zeng ◽  
...  

Solid-state lithium metal batteries (LMBs) assembled with polymer electrolytes (PEs) and lithium metal anodes are promising batteries owing to their enhanced safeties and ultrahigh theoretical energy densities. Nevertheless, polymer electrolytes...


Chemosensors ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 212
Author(s):  
Gonzalo E. Fenoy ◽  
Omar Azzaroni ◽  
Wolfgang Knoll ◽  
Waldemar A. Marmisollé

Organic bioelectronics involves the connection of organic semiconductors with living organisms, organs, tissues, cells, membranes, proteins, and even small molecules. In recent years, this field has received great interest due to the development of all kinds of devices architectures, enabling the detection of several relevant biomarkers, the stimulation and sensing of cells and tissues, and the recording of electrophysiological signals, among others. In this review, we discuss recent functionalization approaches for PEDOT and PEDOT:PSS films with the aim of integrating biomolecules for the fabrication of bioelectronics platforms. As the choice of the strategy is determined by the conducting polymer synthesis method, initially PEDOT and PEDOT:PSS films preparation methods are presented. Later, a wide variety of PEDOT functionalization approaches are discussed, together with bioconjugation techniques to develop efficient organic-biological interfaces. Finally, and by making use of these approaches, the fabrication of different platforms towards organic bioelectronics devices is reviewed.


Sign in / Sign up

Export Citation Format

Share Document