High Mass Ratio Contact Binaries: Recent Evolution into Contact?

Algols ◽  
1989 ◽  
pp. 348-349
Author(s):  
Bruce J. Hrivnak
1989 ◽  
Vol 107 ◽  
pp. 348-349
Author(s):  
Bruce J. Hrivnak

Recent theories of the origin and evolution of contact binaries suggest that the two stars evolve into contact through angular momentum loss (AML; Mochnacki 1981, Vilhu 1982). When in contact, the system then evolves toward smaller mass ratio through mass transfer from the secondary to the primary component (Webbink 1976, Rahunen and Vilhu 1982). Most contact binaries have mass ratios of 0.3 to 0.5.


Author(s):  
Xiao-Hui Fang ◽  
Shengbang Qian ◽  
Miloslav Zejda ◽  
Soonthornthum Boonrucksar ◽  
Xiao Zhou ◽  
...  

Abstract 1SWASP J161335.80$-$284722.2 (hereafter J161335) is an eclipsing red-dwarf binary with an orbital period of $0.229778\:$d, which is around the short-period limit for contact binaries. Three sets of multi-color light curves of J161335 were obtained from different telescopes in 2015 and 2016 and are analyzed using the Wilson–Devinney method. We discovered that the system is a W-type contact system with a contact degree of 19% and a high mass ratio of 0.91. By using all available eclipse times, we found that the observed $-$ calculated $(O-C)$ diagram displays a cyclic oscillation with an amplitude of 0.00196($\pm 0.00006)\:$d and a period of 4.79($\pm 0.14)\:$yr while it undergoes a downward parabolic change. This downward variation corresponds to a continuous decrease in the orbital period at a rate of $dP/dt = -4.26(\pm$0.01) $\times$ 10$^{-7}\:$d$\:$yr$^{-1}$. The small-amplitude oscillation is explained as the light travel-time effect from the gravitational influence of a third body with a lowest mass of $M _{3}$ = 0.15($\pm 0.01)M_{\,\odot }$. In solving the light curves, we found that the third light is increasing, with the wavelength suggesting that the third body may be a cool red dwarf. This is in agreement with the results obtained by analyzing the $O-C$ diagram. The tertiary red dwarf is orbiting the central red-dwarf binary at an orbital separation of 2.8($\pm 0.2$) au. These results suggest that the J161335 system may be formed through early dynamical interaction where the original low-mass component was replaced by a higher-mass third body and the lower-mass component was kicked out to a wider orbit. In this way, a hierarchical triple system similar to J161335 with a high-mass-ratio binary and a small close-in third body is formed.


1989 ◽  
Vol 50 (1-2) ◽  
pp. 348-349
Author(s):  
BruceJ. Hrivnak

2013 ◽  
Vol 284-287 ◽  
pp. 557-561
Author(s):  
Jie Li Fan ◽  
Wei Ping Huang

The two-degrees-of-freedom VIV of the circular cylinder with high mass-ratio is numerically simulated with the software ANSYS/CFX. The VIV characteristic is analyzed in the different conditions (Ur=3, 5, 6, 8, 10). When Ur is 5, 6, 8 and 10, the conclusion which is different from the cylinder with low mass-ratio can be obtained. When Ur is 3, the frequency of in-line VIV is twice of that of cross-flow VIV which is equal to the frequency ratio between drag force and lift force, and the in-line amplitude is much smaller than the cross-flow amplitude. The motion trace is the crescent. When Ur is 5 and 6, the frequency ratio between the drag force and lift force is still 2, but the main frequency of in-line VIV is mainly the same as that of cross-flow VIV and the secondary frequency of in-line VIV is equal to the frequency of the drag force. The in-line amplitude is still very small compared with the cross-flow amplitude. When Ur is up to 8 and 10, the frequency of in-line VIV is the same as the main frequency of cross-flow VIV which is close to the inherent frequency of the cylinder and is different from the frequency of drag force or lift force. But the secondary frequency of cross-flow VIV is equal to the frequency of the lift force. The amplitude ratio of the VIV between in-line and cross-flow direction is about 0.5. When Ur is 5, 6, 8 and 10, the motion trace is mainly the oval.


2021 ◽  
Vol 922 (2) ◽  
pp. 122
Author(s):  
Kai Li ◽  
Qi-Qi Xia ◽  
Chun-Hwey Kim ◽  
Shao-Ming Hu ◽  
Di-Fu Guo ◽  
...  

Abstract The cutoff mass ratio is under debate for contact binaries. In this paper, we present the investigation of two contact binaries with mass ratios close to the low mass ratio limit. It is found that the mass ratios of VSX J082700.8+462850 (hereafter J082700) and 1SWASP J132829.37+555246.1 (hereafter J132829) are both less than 0.1 (q ∼ 0.055 for J082700 and q ∼ 0.089 for J132829). J082700 is a shallow contact binary with a contact degree of ∼19%, and J132829 is a deep contact system with a fill-out factor of ∼70%. The O − C diagram analysis indicated that the two systems manifested long-term period decreases. In addition, J082700 exhibits a cyclic modulation which is more likely resulting from the Applegate mechanism. In order to explore the properties of extremely low mass ratio contact binaries (ELMRCBs), we carried out a statistical analysis on contact binaries with mass ratios of q ≲ 0.1 and discovered that the values of J spin/J orb of three systems are greater than 1/3. Two possible explanations can interpret this phenomenon. One explanation is that some physical processes, unknown to date, are not considered when Hut presented the dynamic stability criterion. The other explanation is that the dimensionless gyration radius (k) should be smaller than the value we used (k 2 = 0.06). We also found that the formation of ELMRCBs possibly has two channels. The study of evolutionary states of ELMRCBs reveals that their evolutionary states are similar with those of normal W UMa contact binaries.


2019 ◽  
Vol 19 (12) ◽  
pp. 174 ◽  
Author(s):  
Quan-Wang Han ◽  
Li-Fang Li ◽  
Deng-Kai Jiang

Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 371
Author(s):  
Wenhua Xu ◽  
Dongfu Liu ◽  
Lihua He ◽  
Zhongwei Zhao

The preparation of Li2CO3 from brine with a high mass ratio of Mg/Li is a worldwide technology problem. Membrane separation is considered as a green and efficient method. In this paper, a comprehensive Li2CO3 preparation process, which involves electrochemical intercalation-deintercalation, nanofiltration, reverse osmosis, evaporation, and precipitation, was constructed. Concretely, the electrochemical intercalation-deintercalation method shows excellent separation performance of lithium and magnesium, and the mass ratio of Mg/Li decreased from the initial 58.5 in the brine to 0.93 in the obtained lithium-containing anolyte. Subsequently, the purification and concentration are performed based on nanofiltration and reverse osmosis technologies, which remove mass magnesium and enrich lithium, respectively. After further evaporation and purification, industrial-grade Li2CO3 can be prepared directly. The direct recovery of lithium from the high Mg/Li brine to the production of Li2CO3 can reach 68.7%, considering that most of the solutions are cycled in the system, the total recovery of lithium will be greater than 85%. In general, this new integrated lithium extraction system provides a new perspective for preparing lithium carbonate from high Mg/Li brine.


2007 ◽  
Vol 16 (12a) ◽  
pp. 2319-2324 ◽  
Author(s):  
JAMES GRABER

LISA may make it possible to test the black-hole uniqueness theorems of general relativity, also called the no-hair theorems, by Ryan's method of detecting the quadrupole moment of a black hole using high-mass-ratio inspirals. This test can be performed more robustly by observing inspirals in earlier stages, where the simplifications used in making inspiral predictions by the perturbative and post-Newtonian methods are more nearly correct. Current concepts for future missions such as DECIGO and BBO would allow even more stringent tests by this same method. Recently discovered evidence supports the existence of intermediate-mass black holes (IMBHs). Inspirals of binary systems with one IMBH and one stellar-mass black hole would fall into the frequency band of proposed maximum sensitivity for DECIGO and BBO. This would enable us to perform the Ryan test more precisely and more robustly. We explain why tests based on observations earlier in the inspiral are more robust and provide preliminary estimates of possible optimal future observations.


Sign in / Sign up

Export Citation Format

Share Document