scholarly journals Deep Ocean Influence on Upper Ocean Baroclinic Instability Saturation

Author(s):  
M. J. Olascoaga ◽  
F. J. Beron-Vera ◽  
J. Sheinbaum
2016 ◽  
Vol 46 (11) ◽  
pp. 3365-3384 ◽  
Author(s):  
Xavier Capet ◽  
Guillaume Roullet ◽  
Patrice Klein ◽  
Guillaume Maze

AbstractThis study focuses on the description of an oceanic variant of the Charney baroclinic instability, arising from the joint presence of (i) an equatorward buoyancy gradient that extends from the surface into the ocean interior and (ii) reduced subsurface stratification, for example, as produced by wintertime convection or subduction. This study analyzes forced dissipative simulations with and without Charney baroclinic instability (C-BCI). In the former, C-BCI strengthens near-surface frontal activity with important consequences in terms of turbulent statistics: increased variance of vertical vorticity and velocity and increased vertical turbulent fluxes. Energetic consequences are explored. Despite the atypical enhancement of submesoscale activity in the simulation subjected to C-BCI, and contrary to several recent studies, the downscale energy flux at the submesoscale en route to dissipation remains modest in the flow energetic equilibration. In particular, it is modest vis à vis the global energy input to the system, the eddy kinetic energy input through conversion of available potential energy, and the classical inverse cascade of kinetic energy. Linear stability analysis suggests that the southern flank of the Gulf Stream may be conducive to oceanic Charney baroclinic instability in spring, following mode water formation and upper-ocean destratification.


2009 ◽  
Vol 39 (2) ◽  
pp. 387-403 ◽  
Author(s):  
Shinichiro Kida ◽  
Jiayan Yang ◽  
James F. Price

Abstract Marginal sea overflows and the overlying upper ocean are coupled in the vertical by two distinct mechanisms—by an interfacial mass flux from the upper ocean to the overflow layer that accompanies entrainment and by a divergent eddy flux associated with baroclinic instability. Because both mechanisms tend to be localized in space, the resulting upper ocean circulation can be characterized as a β plume for which the relevant background potential vorticity is set by the slope of the topography, that is, a topographic β plume. The entrainment-driven topographic β plume consists of a single gyre that is aligned along isobaths. The circulation is cyclonic within the upper ocean (water columns are stretched). The transport within one branch of the topographic β plume may exceed the entrainment flux by a factor of 2 or more. Overflows are likely to be baroclinically unstable, especially near the strait. This creates eddy variability in both the upper ocean and overflow layers and a flux of momentum and energy in the vertical. In the time mean, the eddies accompanying baroclinic instability set up a double-gyre circulation in the upper ocean, an eddy-driven topographic β plume. In regions where baroclinic instability is growing, the momentum flux from the overflow into the upper ocean acts as a drag on the overflow and causes the overflow to descend the slope at a steeper angle than what would arise from bottom friction alone. Numerical model experiments suggest that the Faroe Bank Channel overflow should be the most prominent example of an eddy-driven topographic β plume and that the resulting upper-layer transport should be comparable to that of the overflow. The overflow-layer eddies that accompany baroclinic instability are analogous to those observed in moored array data. In contrast, the upper layer of the Mediterranean overflow is likely to be dominated more by an entrainment-driven topographic β plume. The difference arises because entrainment occurs at a much shallower location for the Mediterranean case and the background potential vorticity gradient of the upper ocean is much larger.


The internal wavefield during the Joint Air—Sea Interaction (JASIN) experiment was monitored by moored current meters and moored and towed thermistor chains. The observations were concentrated in the upper ocean near the centre of Rockall Trough, but velocity measurements were also made near topographic features and throughout the water column. Observed spectra are compared with results from the deep ocean, as represented by the Garrett-Munk (GM) model of the spectral continuum, and are generally found to have spectral levels equal to or greater than the GM spectrum. The greatest deviation from the GM spectrum occurs at high frequencies and wavenumbers where the observed spectra often exhibit a spectral shoulder and high vertical coherence. These features, also found in other upper-ocean spectra, are explained by a model composed of three vertically standing modes. The spatial variation of internal wave variance is related to topography: variance is highest near rough topography. The ratio of variance in the semidiurnal tidal band to variance in a band in the continuum is approximately constant. The possibility of a dynamical link between the two frequency bands requires further investigation. The semidiurnal internal tide varies temporally and spatially. Rockall Bank is identified as the source of an energetic beam of tidal oscillations during a one-week period.


2008 ◽  
Vol 21 (17) ◽  
pp. 4498-4513 ◽  
Author(s):  
Achim Stössel

Abstract The quality of Southern Ocean sea ice simulations in a global ocean general circulation model (GCM) depends decisively on the simulated upper-ocean temperature. This is confirmed by assimilating satellite-derived sea ice concentration to constrain the upper-layer temperature of a sea ice–ocean GCM. The resolution of the model’s sea ice component is about 22 km and thus comparable to the pixel resolution of the satellite data. The ocean component is coarse resolution to afford long-term integrations for investigations of the deep-ocean equilibrium response. Besides improving the sea ice simulation considerably, the simulations with constrained upper-ocean temperature yield much more realistic global deep-ocean properties, in particular when combined with glacial freshwater input. Both outcomes are relatively insensitive to the passive-microwave algorithm used to retrieve the ice concentration being assimilated. The sensitivity of the long-term global deep-ocean properties and circulation to the possible freshwater input from ice shelves and to the parameterization of vertical mixing in the Southern Ocean is reevaluated under the new constraint.


2012 ◽  
Vol 42 (9) ◽  
pp. 1377-1401 ◽  
Author(s):  
Wei Mei ◽  
Claudia Pasquero

Abstract The role of baroclinic instability in the restratification of the upper ocean after the passage of a tropical cyclone (TC) is determined by means of numerical simulations. Using a regional ocean model, the Regional Ocean Modeling System (ROMS), a high-resolution three-dimensional simulation that includes the process of baroclinic instability and is initialized with moderate-amplitude eddy structures reproduces the satellite-observed decay rate of the TC-induced sea surface temperature (SST) anomaly and is also in qualitative agreement with published observations after the passage of Hurricane Fabian in 2003 that showed decaying cold and warm anomalies located in the climatological mixed layer (CML) and upper thermocline, respectively. The model ocean is restratified after approximately one month with a net heat gain in the water column due to anomalous air–sea heat fluxes. The model shows, however, that vertical heat fluxes associated with baroclinic instability dominate over air–sea heat fluxes in restoring the CML heat content during the first month. A comparison with two-dimensional simulations that exclude baroclinic adjustment further highlights the importance of baroclinic instability: it can not only input a considerable amount of heat into the CML, but also establish strong stratification there, inhibiting the downward penetration of heat contributed by diabatic heating at the surface; both effects hasten the recovery of the SST. Additional experiments were performed to examine the sensitivity of the model results to changes in Newtonian cooling rate, changes in the magnitude of the eddy structures used to initialize the simulation, and changes in poststorm wind strength; the results indicate that, although some of them may have a significant effect on the recovery time of the SST, their influence on the contribution of baroclinic instability to the recovery of the CML heat content is modest. However, the contribution of baroclinic instability exhibits pronounced positive dependence on the depth of the mixing layer relative to the CML depth and the relative size of the area with unperturbed water. Its dependence on the shape of the spatial variation of the mixing depth is relatively weak but in a more complicated manner. These dependencies are consistent with those predicted by a simple front adjustment model, whereas the latter also suggest that the contribution of baroclinic instability is independent of the prestorm stratification below the CML. Overall, the idealized simulations in this study suggest that, for a typical situation in the real ocean, baroclinic instability can account for approximately 50% of the full recovery of the CML heat content, whereas under specific conditions the contribution can be significantly smaller. Those estimates provide a limit to the maximum net warming of the water column after the initial mixing event and thus have important implications regarding estimating the long-term effect of TCs on the upper-ocean heat budget.


2020 ◽  
Vol 50 (7) ◽  
pp. 1937-1956
Author(s):  
Lixin Qu ◽  
Robert Hetland

AbstractBaroclinic instabilities are important processes that enhance mixing and dispersion in the ocean. The presence of sloping bathymetry and the nongeostrophic effect influence the formation and evolution of baroclinic instabilities in oceanic bottom boundary layers and in coastal waters. This study explores two nongeostrophic baroclinic instability theories adapted to the scenario with sloping bathymetry and investigates the mechanism of the instability suppression (reduction in growth rate) in the buoyant flow regime. Both the two-layer and continuously stratified models reveal that the suppression is related to a new parameter, slope-relative Burger number Sr ≡ (M2/f2)(α + αp), where M2 is the horizontal buoyancy gradient, α is the bathymetry slope, and αp is the isopycnal slope. In the layer model, the instability growth rate linearly decreases with increasing Sr {the bulk form Sr = [U0/(H0f)](α + αp)}. In the continuously stratified model, the instability suppression intensifies with increasing Sr when the regime shifts from quasigeostrophic to nongeostrophic. The adapted theories are intrinsically applicable to deep ocean bottom boundary layers and could be conditionally applied to coastal buoyancy-driven flow. The slope-relative Burger number is related to the Richardson number by Sr = δrRi−1, where the slope-relative parameter is δr = (α + αp)/αp. Since energetic fronts in coastal zones are often characterized by low Ri, that implies potentially higher values of Sr, which is why baroclinic instabilities may be suppressed in the energetic regions where they would otherwise be expected to be ubiquitous according to the quasigeostrophic theory.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
William A. Jones ◽  
David M. Checkley

Abstract The mesopelagic (200–1000 m) separates the productive upper ocean from the deep ocean, yet little is known of its long-term dynamics despite recent research that suggests fishes of this zone likely dominate global fish biomass and contribute to the downward flux of carbon. Here we show that mesopelagic fishes dominate the otolith (ear bone) record in anoxic sediment layers of the Santa Barbara Basin over the past two millennia. Among these mesopelagic fishes, otoliths from families Bathylagidae (deep-sea smelts) and Myctophidae (lanternfish) are most abundant. Otolith deposition rate fluctuates at decadal to centennial time scales and covaries with proxies for upper ocean temperature, consistent with climate forcing. Moreover, otolith deposition rate and proxies for temperature and primary productivity show contemporaneous discontinuities during the Medieval Climate Anomaly and Little Ice Age. Mesopelagic fishes may serve as proxies for future climatic influence at those depths including effects on the carbon cycle.


Ocean Science ◽  
2015 ◽  
Vol 11 (4) ◽  
pp. 591-605 ◽  
Author(s):  
A. Gnanadesikan ◽  
M.-A. Pradal ◽  
R. Abernathey

Abstract. This paper uses a suite of Earth system models which simulate the distribution of He isotopes and radiocarbon to examine two paradoxes in Earth science, each of which results from an inconsistency between theoretically motivated global energy balances and direct observations. The helium–heat paradox refers to the fact that helium emissions to the deep ocean are far lower than would be expected given the rate of geothermal heating, since both are thought to be the result of radioactive decay in Earth's interior. The isopycnal mixing paradox comes from the fact that many theoretical parameterizations of the isopycnal mixing coefficient ARedi that link it to baroclinic instability project it to be small (of order a few hundred m2 s−1) in the ocean interior away from boundary currents. However, direct observations using tracers and floats (largely in the upper ocean) suggest that values of this coefficient are an order of magnitude higher. Helium isotopes equilibrate rapidly with the atmosphere and thus exhibit large gradients along isopycnals while radiocarbon equilibrates slowly and thus exhibits smaller gradients along isopycnals. Thus it might be thought that resolving the isopycnal mixing paradox in favor of the higher observational estimates of ARedi might also solve the helium paradox, by increasing the transport of mantle helium to the surface more than it would radiocarbon. In this paper we show that this is not the case. In a suite of models with different spatially constant and spatially varying values of ARedi the distribution of radiocarbon and helium isotopes is sensitive to the value of ARedi. However, away from strong helium sources in the southeastern Pacific, the relationship between the two is not sensitive, indicating that large-scale advection is the limiting process for removing helium and radiocarbon from the deep ocean. The helium isotopes, in turn, suggest a higher value of ARedi below the thermocline than is seen in theoretical parameterizations based on baroclinic growth rates. We argue that a key part of resolving the isopycnal mixing paradox is to abandon the idea that ARedi has a direct relationship to local baroclinic instability and to the so-called "thickness" mixing coefficient AGM.


2018 ◽  
Vol 48 (11) ◽  
pp. 2571-2592 ◽  
Author(s):  
Jacob O. Wenegrat ◽  
Jörn Callies ◽  
Leif N. Thomas

AbstractWeakly stratified layers over sloping topography can support a submesoscale baroclinic instability mode, a bottom boundary layer counterpart to surface mixed layer instabilities. The instability results from the release of available potential energy, which can be generated because of the observed bottom intensification of turbulent mixing in the deep ocean, or the Ekman adjustment of a current on a slope. Linear stability analysis suggests that the growth rates of bottom boundary layer baroclinic instabilities can be comparable to those of the surface mixed layer mode and are relatively insensitive to topographic slope angle, implying the instability is robust and potentially active in many areas of the global oceans. The solutions of two separate one-dimensional theories of the bottom boundary layer are both demonstrated to be linearly unstable to baroclinic instability, and results from an example nonlinear simulation are shown. Implications of these findings for understanding bottom boundary layer dynamics and processes are discussed.


Sign in / Sign up

Export Citation Format

Share Document