scholarly journals Marginal Sea Overflows and the Upper Ocean Interaction

2009 ◽  
Vol 39 (2) ◽  
pp. 387-403 ◽  
Author(s):  
Shinichiro Kida ◽  
Jiayan Yang ◽  
James F. Price

Abstract Marginal sea overflows and the overlying upper ocean are coupled in the vertical by two distinct mechanisms—by an interfacial mass flux from the upper ocean to the overflow layer that accompanies entrainment and by a divergent eddy flux associated with baroclinic instability. Because both mechanisms tend to be localized in space, the resulting upper ocean circulation can be characterized as a β plume for which the relevant background potential vorticity is set by the slope of the topography, that is, a topographic β plume. The entrainment-driven topographic β plume consists of a single gyre that is aligned along isobaths. The circulation is cyclonic within the upper ocean (water columns are stretched). The transport within one branch of the topographic β plume may exceed the entrainment flux by a factor of 2 or more. Overflows are likely to be baroclinically unstable, especially near the strait. This creates eddy variability in both the upper ocean and overflow layers and a flux of momentum and energy in the vertical. In the time mean, the eddies accompanying baroclinic instability set up a double-gyre circulation in the upper ocean, an eddy-driven topographic β plume. In regions where baroclinic instability is growing, the momentum flux from the overflow into the upper ocean acts as a drag on the overflow and causes the overflow to descend the slope at a steeper angle than what would arise from bottom friction alone. Numerical model experiments suggest that the Faroe Bank Channel overflow should be the most prominent example of an eddy-driven topographic β plume and that the resulting upper-layer transport should be comparable to that of the overflow. The overflow-layer eddies that accompany baroclinic instability are analogous to those observed in moored array data. In contrast, the upper layer of the Mediterranean overflow is likely to be dominated more by an entrainment-driven topographic β plume. The difference arises because entrainment occurs at a much shallower location for the Mediterranean case and the background potential vorticity gradient of the upper ocean is much larger.

1997 ◽  
Vol 24 (4) ◽  
pp. 425-428 ◽  
Author(s):  
N. Pinardi ◽  
G. Korres ◽  
A. Lascaratos ◽  
V. Roussenov ◽  
E. Stanev

Author(s):  
Alberto Portera ◽  
Marco Bassani

Current design manuals provide guidance on how to design exit ramps to facilitate driving operations and minimize the incidence of crashes. They also suggest that interchanges should be built along straight roadway sections. These criteria may prove ineffective in situations where there is no alternative to terminals being located along curved motorway segments. The paper investigates driving behavior along parallel deceleration curved terminals, with attention paid to the difference in impact between terminals having a curvature which is the same sign as the motorway segment (i.e., continue design), and those having an opposite curvature (i.e., reverse design). A driving simulation study was set up to collect longitudinal and transversal driver behavioral data in response to experimental factor variations. Forty-eight drivers were stratified on the basis of age and gender, and asked to drive along three randomly assigned circuits with off-ramps obtained by combining experimental factors such as motorway mainline curve radius (2 values), terminal length (3), curve direction (2), and traffic conditions (2). The motorway radius was found to be significant for drivers’ preferred speed when approaching the terminal. Terminal length and traffic volume do not have a significant impact on either longitudinal or transversal driver outputs. However, the effect of curve direction was found to be significant, notably for reverse terminals which do not compel drivers to select appropriate speeds and lane change positions. This terminal type can give rise to critical driving situations that should be considered at the design stage to facilitate the adoption of appropriate safety countermeasures.


2005 ◽  
Vol 127 (4) ◽  
pp. 755-762 ◽  
Author(s):  
Yasushi Tatebayashi ◽  
Kazuhiro Tanaka ◽  
Toshio Kobayashi

The authors have been investigating the various characteristics of screw-type centrifugal pumps, such as pressure fluctuations in impellers, flow patterns in volute casings, and pump performance in air-water two-phase flow conditions. During these investigations, numerical results of our investigations made it clear that three back flow regions existed in this type of pump. Among these, the back flow from the volute casing toward the impeller outlet was the most influential on the pump performance. Thus the most important factor to achieve higher pump performance was to reduce the influence of this back flow. One simple method was proposed to obtain the restraint of back flow and so as to improve the pump performance. This method was to set up a ringlike wall at the suction cover casing between the impeller outlet and the volute casing. Its effects on the flow pattern and the pump performance have been discussed and clarified to compare the calculated results with experimental results done under two conditions, namely, one with and one without this ring-type wall. The influence of wall’s height on the pump head was investigated by numerical simulations. In addition, the difference due to the wall’s effect was clarified to compare its effects on two kinds of volute casing. From the results obtained it can be said that restraining the back flow of such pumps was very important to achieve higher pump performance. Furthermore, another method was suggested to restrain back flow effectively. This method was to attach a wall at the trailing edge of impeller. This method was very useful for avoiding the congestion of solids because this wall was smaller than that used in the first method. The influence of these factors on the pump performance was also discussed by comparing simulated calculations with actual experiments.


Author(s):  
Diego Bruciaferri ◽  
Marina Tonani ◽  
Huw Lewis ◽  
John Siddorn ◽  
Andrew Saulter ◽  
...  

2010 ◽  
Vol 40 (2) ◽  
pp. 257-278 ◽  
Author(s):  
Andrew F. Thompson

Abstract Satellite altimetry and high-resolution ocean models indicate that the Southern Ocean comprises an intricate web of narrow, meandering jets that undergo spontaneous formation, merger, and splitting events, as well as rapid latitude shifts over periods of weeks to months. The role of topography in controlling jet variability is explored using over 100 simulations from a doubly periodic, forced-dissipative, two-layer quasigeostrophic model. The system is forced by a baroclinically unstable, vertically sheared mean flow in a domain that is large enough to accommodate multiple jets. The dependence of (i) meridional jet spacing, (ii) jet variability, and (iii) domain-averaged meridional transport on changes in the length scale and steepness of simple sinusoidal topographical features is analyzed. The Rhines scale, ℓβ = 2πVe/β, where Ve is an eddy velocity scale and β is the barotropic potential vorticity gradient, measures the meridional extent of eddy mixing by a single jet. The ratio ℓβ /ℓT, where ℓT is the topographic length scale, governs jet behavior. Multiple, steady jets with fixed meridional spacing are observed when ℓβ ≫ ℓT or when ℓβ ≈ ℓT. When ℓβ < ℓT, a pattern of perpetual jet formation and jet merger dominates the time evolution of the system. Zonal ridges systematically reduce the domain-averaged meridional transport, while two-dimensional, sinusoidal bumps can increase transport by an order of magnitude or more. For certain parameters, bumpy topography gives rise to periodic oscillations in the jet structure between purely zonal and topographically steered states. In these cases, transport is dominated by bursts of mixing associated with the transition between the two regimes. Topography modifies local potential vorticity (PV) gradients and mean flows; this can generate asymmetric Reynolds stresses about the jet core and can feed back on the conversion of potential energy to kinetic energy through baroclinic instability. Both processes contribute to unsteady jet behavior. It is likely that these processes play a role in the dynamic nature of Southern Ocean jets.


2014 ◽  
Vol 44 (3) ◽  
pp. 922-943 ◽  
Author(s):  
V. O. Ivchenko ◽  
S. Danilov ◽  
B. Sinha ◽  
J. Schröter

Abstract Integral constraints for momentum and energy impose restrictions on parameterizations of eddy potential vorticity (PV) fluxes. The impact of these constraints is studied for a wind-forced quasigeostrophic two-layer zonal channel model with variable bottom topography. The presence of a small parameter, given by the ratio of Rossby radius to the width of the channel, makes it possible to find an analytical/asymptotic solution for the zonally and time-averaged flow, given diffusive parameterizations for the eddy PV fluxes. This solution, when substituted in the constraints, leads to nontrivial explicit restrictions on diffusivities. The system is characterized by four dimensionless governing parameters with a clear physical interpretation. The bottom form stress, the major term balancing the external force of wind stress, depends on the governing parameters and fundamentally modifies the restrictions compared to the flat bottom case. While the analytical solution bears an illustrative character, it helps to see certain nontrivial connections in the system that will be useful in the analysis of more complicated models of ocean circulation. A numerical solution supports the analytical study and confirms that the presence of topography strongly modifies the eddy fluxes.


2007 ◽  
Vol 37 (2) ◽  
pp. 338-358 ◽  
Author(s):  
Ichiro Fukumori ◽  
Dimitris Menemenlis ◽  
Tong Lee

Abstract A new basin-wide oscillation of the Mediterranean Sea is identified and analyzed using sea level observations from the Ocean Topography Experiment (TOPEX)/Poseidon satellite altimeter and a numerical ocean circulation model. More than 50% of the large-scale, nontidal, and non-pressure-driven variance of sea level can be attributed to this oscillation, which is nearly uniform in phase and amplitude across the entire basin. The oscillation has periods ranging from 10 days to several years and has a magnitude as large as 10 cm. The model suggests that the fluctuations are driven by winds at the Strait of Gibraltar and its neighboring region, including the Alboran Sea and a part of the Atlantic Ocean immediately to the west of the strait. Winds in this region force a net mass flux through the Strait of Gibraltar to which the Mediterranean Sea adjusts almost uniformly across its entire basin with depth-independent pressure perturbations. The wind-driven response can be explained in part by wind setup; a near-stationary balance is established between the along-strait wind in this forcing region and the sea level difference between the Mediterranean Sea and the Atlantic Ocean. The amplitude of this basin-wide wind-driven sea level fluctuation is inversely proportional to the setup region’s depth but is insensitive to its width including that of Gibraltar Strait. The wind-driven fluctuation is coherent with atmospheric pressure over the basin and contributes to the apparent deviation of the Mediterranean Sea from an inverse barometer response.


Ocean Science ◽  
2013 ◽  
Vol 9 (2) ◽  
pp. 301-324 ◽  
Author(s):  
K. Schroeder ◽  
C. Millot ◽  
L. Bengara ◽  
S. Ben Ismail ◽  
M. Bensi ◽  
...  

Abstract. The long-term monitoring of basic hydrological parameters (temperature and salinity), collected as time series with adequate temporal resolution (i.e. with a sampling interval allowing the resolution of all important timescales) in key places of the Mediterranean Sea (straits and channels, zones of dense water formation, deep parts of the basins), constitute a priority in the context of global changes. This led CIESM (The Mediterranean Science Commission) to support, since 2002, the HYDROCHANGES programme (http//www.ciesm.org/marine/programs/hydrochanges.htm), a network of autonomous conductivity, temperature, and depth (CTD) sensors, deployed on mainly short and easily manageable subsurface moorings, within the core of a certain water mass. The HYDROCHANGES strategy is twofold and develops on different scales. To get information about long-term changes of hydrological characteristics, long time series are needed. But before these series are long enough they allow the detection of links between them at shorter timescales that may provide extremely valuable information about the functioning of the Mediterranean Sea. The aim of this paper is to present the history of the programme and the current set-up of the network (monitored sites, involved groups) as well as to provide for the first time an overview of all the time series collected under the HYDROCHANGES umbrella, discussing the results obtained thanks to the programme.


1902 ◽  
Vol 23 ◽  
pp. 296-311
Author(s):  
C. G. Knott

At a recent meeting of the Society, Dr Buchan read a paper based on certain observations of the temperature of the waters of the Mediterranean, which had been made by the staff of the Austrian ship Pola. These indicated that the direct effect of solar Tadiation was felt to a depth of over 150 feet. At any rate, the facts were that the temperature of the upper stratum of water of this thickness was perceptibly higher at about 4 p.m. than at 8 a.m., and that the difference was about 1°·5 Fahr. or 0°·8 Cent, at the surface, diminishing fairly steadily to value zero at a depth of fully 150 feet or 50 metres. It may easily be calculated that this excess of temperature at the afternoon hour means the accumulation of an amount of heat equal to 1460 units in every column of water 1 square centimetre in section; and this is accomplished within the eight hours from 8 a.m. to 4 p.m. It must be noted that this accumulation of heat is a daily occurrence.


Sign in / Sign up

Export Citation Format

Share Document