Numerical Simulation and Prediction of Storm Surges and Water Levels in Shanghai Harbour and Its Vicinity

Author(s):  
Zenghao Qin ◽  
Yihong Duan ◽  
Yinong Wang ◽  
Zhengfen Shen ◽  
Kuanren Xu
1994 ◽  
Vol 9 (1-2) ◽  
pp. 167-188 ◽  
Author(s):  
Zenghao Qin ◽  
Yihong Duan ◽  
Yinong Wang ◽  
Zhengfen Shen ◽  
Kuanren Xu

Author(s):  
A.-L. Montreuil ◽  
M. Chen ◽  
A. Esquerré ◽  
R. Houthuys ◽  
R. Moelans ◽  
...  

<p><strong>Abstract.</strong> Sustainable management of the coastal resources requires a better understanding of the processes that drive coastline change. The coastline is a highly dynamic sea-terrestrial interface. It is affected by forcing factors such as water levels, waves, winds, and the highest and most severe changes occur during storm surges. Extreme storms are drivers responsible for rapid and sometimes dramatic changes of the coastline. The consequences of the impacts from these events entail a broad range of social, economic and natural resource considerations from threats to humans, infrastructure and habitats. This study investigates the impact of a severe storm on coastline response on a sandy multi-barred beach at the Belgian coast. Airborne LiDAR surveys acquired pre- and post-storm covering an area larger than 1 km<sup>2</sup> were analyzed and reproducible monitoring solutions adapted to assess beach morphological changes were applied. Results indicated that the coast retreated by a maximum of 14.7 m where the embryo dunes in front of the fixed dunes were vanished and the foredune undercut. Storm surge and wave attacks were probably the most energetic there. However, the response of the coastline proxies associated with the mean high water line (MHW) and dunetoe (DuneT) was spatially variable. Based on the extracted beach features, good correlations (r>0.73) were found between coastline, berm and inner intertidal bar morphology, while it was weak with the most seaward bars covered in the surveys. This highlights the role of the upper features on the beach to protect the coastline from storm erosion by reducing wave energy. The findings are of critical importance in improving our knowledge and forecasting of coastline response to storms, and also in its translation into management practices.</p>


2014 ◽  
Vol 2 (2) ◽  
pp. 1637-1670 ◽  
Author(s):  
K. M. de Bruijn ◽  
F. L. M. Diermanse ◽  
J. V. L. Beckers

Abstract. This paper discusses the new method developed to analyse flood risks in river deltas. Risk analysis of river deltas is complex, because both storm surges and river discharges may cause flooding and since the effect of upstream breaches on downstream water levels and flood risks must be taken into account. A Monte Carlo based flood risk analysis framework for policy making was developed, which considers both storm surges and river flood waves and includes hydrodynamic interaction effects on flood risks. It was applied to analyse societal flood fatality risks (the probability of events with more than N fatalities) in the Rhine–Meuse delta.


2015 ◽  
Vol 3 (5) ◽  
pp. 3181-3224 ◽  
Author(s):  
S. Smolders ◽  
Y. Plancke ◽  
S. Ides ◽  
P. Meire ◽  
S. Temmerman

Abstract. Coastal lowlands and estuaries are subjected to increasing flood risks during storm surges due to global and regional changes. Tidal wetlands are increasingly valued as effective natural buffers for storm surges by dissipating wave energy and providing flood water storage. While previous studies focused on flood wave attenuation within and behind wetlands, this study focuses on the effects of estuarine wetland properties on the attenuation of a storm tide that propagates along the length of an estuary. Wetland properties including elevation, surface area, and location within the estuary were investigated using a numerical model of the Scheldt estuary (Belgium, SW Netherlands). For a spring tide lower wetland elevations result in more attenuation of high water levels along the estuary, while for a higher storm tide higher elevations provide more attenuation compared to lower wetland elevations. For spring and storm tide a arger wetland surface area results in a better attenuation along the estuary up to a threshold wetland size for which larger wetlands do not further contribute to more attenuation. Finally a wetland of the same size and elevation, but located more upstream in the estuary, can store a larger proportion of the local flood volume and therefore has a larger attenuating effect on upstream high water levels. With this paper we aim to contribute towards a better understanding and wider implementation of ecosystem-based adaptation to increasing estuarine flood risks associated with storms.


2014 ◽  
Vol 1 (34) ◽  
pp. 26
Author(s):  
Khandker Masuma Tasnim ◽  
Ohira Koichiro ◽  
Tomoya Shibayama ◽  
Miguel Esteban ◽  
Ryota Nakamura

Ocean Science ◽  
2009 ◽  
Vol 5 (3) ◽  
pp. 369-378 ◽  
Author(s):  
A. Sterl ◽  
H. van den Brink ◽  
H. de Vries ◽  
R. Haarsma ◽  
E. van Meijgaard

Abstract. The height of storm surges is extremely important for a low-lying country like The Netherlands. By law, part of the coastal defence system has to withstand a water level that on average occurs only once every 10 000 years. The question then arises whether and how climate change affects the heights of extreme storm surges. Published research points to only small changes. However, due to the limited amount of data available results are usually limited to relatively frequent extremes like the annual 99%-ile. We here report on results from a 17-member ensemble of North Sea water levels spaning the period 1950–2100. It was created by forcing a surge model of the North Sea with meteorological output from a state-of-the-art global climate model which has been driven by greenhouse gas emissions following the SRES A1b scenario. The large ensemble size enables us to calculate 10 000 year return water levels with a low statistical uncertainty. In the one model used in this study, we find no statistically significant change in the 10 000 year return values of surge heights along the Dutch during the 21st century. Also a higher sea level resulting from global warming does not impact the height of the storm surges. As a side effect of our simulations we also obtain results on the interplay between surge and tide.


2013 ◽  
Vol 634-638 ◽  
pp. 3563-3566
Author(s):  
Hai Wang Ye ◽  
Dong Ling Nong ◽  
Ting Li ◽  
Jie Wang Ye

When charging in water-filled-hole with emulsion mixed loading truck, if the charging hose can not reach the borehole bottom, there will be a water column in the charge. Emulsion explosive charging in water-filled-hole is simulated under three conditions with different water levels, charging velocity and hole diameter when the hose of the explosive mixed loading truck does not reach the hole bottom. The results show that explosive can not reach the bottom of the blasthole if the water depth exceeds the maximum effective range of the jet flow, which is proportional to charging speed and hole diameter, and there will exist a water column at the bottom of the hole. To prevent that, the distance between the hose outlet and the hole bottom must be shorter than the effective range when charging. Besides, increasing charging velocity also works.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Fan Xuefeng ◽  
Zhenyu Wu ◽  
Liu Lijun ◽  
Yanfeng Wen ◽  
Shu Yu ◽  
...  

For sluices built on soil foundations, seepage safety of the foundation is one of the most concerns during operation of sluices. Monitoring data could reflect the real seepage behavior in the foundation, but of which the shortcoming is that generally only the local seepage states can be measured. The seepage field in the whole foundation can be analyzed by numerical simulation. The permeability coefficients of the foundation materials significantly affect the numerical simulation results; however, it is difficult to accurately determine the values of permeability coefficients. In this paper, an approach based on response surface method (RSM) for calibration of permeability coefficients was proposed, and the efficiency of parameter calibration is improved by constructing the response surface equation instead of time-consuming finite element calculation of foundation seepage. The seepage in a sluice foundation was analyzed using monitoring data and numerical simulation. The monitoring data showed that the seepage pressure in the foundation periodically varies with high value in flood season and low value in dry season. After calibration of the permeability coefficients of the foundation materials using the measured seepage pressure, the seepage fields in the foundation for different water levels were numerically simulated to investigate the cause for the periodical variation of the seepage pressure and the seepage safety of the foundation was assessed with the calculated seepage gradients. The methods adopted in this study could be applied to seepage analysis for sluice foundations with similar geologic conditions and antiseepage measures.


Sign in / Sign up

Export Citation Format

Share Document